Esercizio 4

Uno dei più semplici modelli matematici per lo studio di dinamica di popolazioni, in ipotesi di immigrazione costante nel tempo, è basato sull'ipotesi che la velocità con cui cambia il numero di individui della popolazione dal tempo t_0 al tempo t_1 è direttamente proporzionale al numero di individui presenti al tempo t_0 e dalla costante di immigrazione. Tale modelli conduce alla seguente funzione:

$$N(t) = N_0 e^{rt} + \frac{I}{r} (e^{rt} - 1)$$

dove N(t) descrive l'andamento della popolazione al variare del tempo t, N₀ è il numero di individui al tempo t_0 , e è il numero di Nepero (≈ 2.7182818), I è la costante di immigrazione e r è la costante legata alla nascita di nuovi individui. Nelle ipotesi che si conosca il numero di individui al tempo t_0 (N₀=1000000) e t_1 =1 (N₁=1564000) ed il numero di immigrati I (I =435000) per determinare il fattore di nascita r occorre risolvere la seguente equazione

$$1564000 = 1000000e^r + \frac{435000}{r}(e^r - 1)$$

E' possibile risolvere questa equazione con il metodo approssimato delle tangenti: data un'approssimazione iniziale r_0 si genera una successione di approssimazioni

$$r_{n+1} = r_n - \frac{1000000e^{r_n} + \frac{435000}{r_n}(e^{r_n} - 1) - 1564000}{1000000e^{r_n} - \frac{435000}{r_n^2}(e^{r_n} - 1) + \frac{435000}{r_n}e^{r_n}}.$$

Per stimare l'errore che si commette accettando come soluzione r_{n+1} si può utilizzare la quantità

$$\frac{\left|r_{n+1}-r_n\right|}{\left|r_{n+1}\right|}.$$

Scrivere un codice che approssimi r con errore $err<10^{-6}$ ricevendo in input r_0 . Se in10 iterate tale approssimazione non è raggiunta il codice termina con un messaggio di errore.

Testare il programma con r_0 =0.2, r_0 =-2, r_0 =4.