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Abstract Code reading is one of the most frequent activities in software mainte-
nance. Such an activity aims at acquiring information from the code and, thus, it
is a prerequisite for program comprehension: developers need to read the source
code they are going to modify before implementing changes. As the code changes,
so does its readability; however, it is not clear yet how code readability changes
during software evolution.

To understand how code readability changes when software evolves, we studied
the history of 25 open source systems. We modeled code readability evolution by
defining four states in which a file can be at a certain point of time (non-existing ,
other-name, readable, and unreadable). We used the data gathered to infer the
probability of transitioning from one state to another one. In addition, we also
manually checked a significant sample of transitions to compute the performance of
the state-of-the-art readability prediction model we used to calculate the transition
probabilities. With this manual analysis, we found that the tool correctly classifies
all the transitions in the majority of the cases, even if there is a loss of accuracy
compared to the single-version readability estimation. Our results show that most
of the source code files are created readable. Moreover, we observed that only a
minority of the commits change the readability state.

Finally, we manually carried out qualitative analysis to understand what makes
code unreadable and what developers do to prevent this. Using our results we
propose some guidelines (i) to reduce the risk of code readability erosion and (ii)
to promote best practices that make code readable.
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1 Introduction

“Readability” is a fundamental and highly desirable property of the source code.
Code reading is the very first step during incremental change (Bennett and Ra-
jlich, 2000; Rajlich and Gosavi, 2004), which is required to perform concept loca-
tion, impact analysis and the corresponding change implementation/propagation.
Assuring source code readability becomes an imperative in modern open source
software development due to its collaborative and geographically distributed char-
acter. Erlikh (2000) has shown that during software evolution tasks developers
spend plenty of time maintaining the existing code (often written by others), far
more than writing code from scratch.

Several facets have been reported as components that contribute to making
code readable (Martin, 2009; Oram and Wilson, 2007; Beck, 2007). Such compo-
nents include complexity, usage of design concepts, formatting, source code lexi-
con, and visual aspects (i.e., syntax highlighting). Indeed, previous work provide
empirical evidence that structural (Buse and Weimer, 2010; Posnett et al., 2011),
visual (Dorn, 2012), and textual (Scalabrino et al., 2016, 2018) aspects can be used
to automatically assess code readability, shedding some light on what makes code
readable or unreadable. Such studies tend to focus on a single version of a software
artifact. However, software is a palimpsest with subsequent changes applied on top
of the previous ones.

This is why one can plausibly expect source code readability to be an outcome
of a complex process involving multiple actors and revisions. To the best of our
knowledge, the literature provides only few hints on how readability changes, why
some parts of the system start to become less readable and what developers do
to prevent it. Lee et al. (2015) explored 210 open source Java projects in order
to study the existing relationship between source code and violated coding con-
vention. They found that code readability is affected only by some of such code
violations (such as Javadoc-related ones), while it is not affected by others (e.g.,
class design-related). Spinellis et al. (2016) studied the evolution of programming
practices in Unix and, among the other aspects, they considered readability us-
ing some common readability metrics, such as statement density and comment
character density (i.e., comment characters divided by the total number of char-
acters across all source code files). The authors found that readability in Unix
has increased over time. Such a study provides some interesting insights on how
readability evolves; however, it is focused on a single software system and, there-
fore, it is not clear if these findings are true also for other systems and for other
programming languages.

In this paper, we take a closer look at how code readability changes in the
evolution of software systems. First, we conducted a survey with 122 developers
to understand to what extent code readability is important to them, and we found
that the vast majority (∼83.8%) often take code readability into account when
writing code. Then, we defined a model able to describe the readability evolution
of a given file in a software project. This model is a Markov chain based on two
main states, i.e., file being readable and unreadable, and two initial states, i.e.,
non-existing (when the file is not created yet) and other-name (when the file exists
with a different name). We used the most accurate tool available in the literature
(Scalabrino et al., 2018) to decide if a snapshot of a file was readable or unreadable.
Such a tool, like the other ones in the literature, was designed to work on single
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code snapshot: it is unclear what is the accuracy achieved in classifying readability
transitions (from {readable/unreadable} to {readable/unreadable}). Therefore, we
re-assessed the accuracy of the approach we used in this different context. To
do this, three raters manually validated a statistically significant sample of the
transitions from our dataset.

To estimate the underlying probabilities that a file moves from one state to
another, we measured the code readability of all the versions of source code files
taken from the history of 25 software systems, involved in ∼83k commits. We stud-
ied the evolution of readability at commit level: this is the finest-grained analysis
possibly achievable looking at the revision history of a software project.

Our results suggest that unreadable files are a minority and that most of them
are unreadable since their introduction in the repositories. We observed a low
readability deterioration: in all the project analyzed, we found that unreadable
files are more likely to become readable than the other way around.

We also manually analyzed the files for which the readability score varied
the most throughout the history of the project, to understand (i) which types
of changes (i.e., perfective, corrective, or adaptive) affect readability the most,
and (ii) why readability changes. We observed that the perfective and correc-
tive changes we analyzed improved code readability. On the other hand, adaptive
changes sometimes also caused a significant readability reduction: most likely this
happens when developers make big changes. Based on our results, we defined some
guidelines that developers can adopt to keep low the number of unreadable files.

The remainder of the paper is organized as follows. Section 2 discusses the
related literature. In Section 3 we report a motivating study for this work through
which we aim at understanding to what extent developers care about code read-
ability. Section 4 presents the model we used to describe the readability evolution
of a file. In Section 5 we report a preliminary empirical study in which we evaluate
the performance of a state-of-the-art readability prediction model for readability
evolution classification: we do this to understand to what extent existing models
are reliable in this different context. In Section 6 we report the design and the
results of our main empirical investigation, in which we analyze the readability
evolution of software projects and we try to understand which changes mostly
impact code readability. Finally, Section 7 discusses the threats to validity of the
studies and Section 8 concludes the paper.

2 Related Works

Quality of the source code has been extensively studied in the literature start-
ing from the 1960 when first software metrics have been proposed, like Lines Of
Code, McCabe’s Cyclomatic Complexity (McCabe, 1976) and Halstead’s metrics
(Halstead, 1977).

While none of them explicitly refers to readability, many of them include re-
lated notions of maintanability or understandability (McCall et al., 1977; Boehm
et al., 1978; Grady, 1992). This being said, in ISO 9126 understandability takes the
perspective of the end-user rather than the one of the developer as, for instance,
in the case of the earlier model by Boehm et al. (1978) and SQALE (Letouzey and
Coq, 2010). Given the extensive research on software quality, providing a complete
overview is not possible and we focus on readability from here on.
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2.1 Code Readability

Previous works focused on automatic assessment of code readability (Buse and
Weimer, 2008, 2010; Posnett et al., 2011; Dorn, 2012; Scalabrino et al., 2018). All
the state-of-the-art approaches use machine learning: they all define some features
measured on the source code and they train a binary classifier to distinguish read-
able code from unreadable code. In order to train the classifier on how to correctly
classify source code snippets, these approaches need a huge dataset containing hu-
man assessments of code readability. Three datasets are available in the literature
(Buse and Weimer, 2008; Dorn, 2012; Scalabrino et al., 2016). All such datasets are
built similarly: the authors selected a set of snippets S, asked several developers
to evaluate them in terms of readability using a Likert scale from 1 to 5 and then
they (i) aggregated such values and (ii) used a threshold to have a ground-truth
readability level to classify each snippet as readable or unreadable. In all these
studies, authors reported the agreement among the evaluators.

Buse and Weimer (2008, 2010) designed the first readability model based on
structural features, such as line and identifier length, number of loops, identifiers,
keywords, parenthesis, arithmetic and comparison operators, and so on. Posnett
et al. (2011) defined a simpler model, similar to the ones used to estimate the
readability of text in natural language. Such a model uses just three features: lines
of code (LOC), entropy and volume. Dorn (2012) introduced visual, spatial and
linguistic features to the previous models that measure aspects such as indentation
regularity and alignment, both important when reading code. He showed that such
features allow to define a more general model.

Scalabrino et al. (2016, 2018) defined a new set of textual features to capture
a different dimension of code readability. Such features include, for example, con-
sistency between comments and identifiers, and comment readability. The authors
showed that a comprehensive model including all the state-of-the-art features is
more accurate than single models that consider only single categories of features.

Pantiuchina et al. (2018) tried to understand if such readability metrics change
in the commits in which developers declared they improved code readability. Their
results show that this happens only in a minority of the cases. Fakhoury et al.
(2019) recently reported a similar result. This effect could be due to the fact that
even if a change improves readability, the improvement might be small with respect
to the size of the changed class, and so this makes explainable the difference in
the metric.

The studies most related to the one we report in this paper are the ones
by Lee et al. (2015) and Spinellis et al. (2016). Lee et al. (2015) observed that
the number of coding violations increases during the early stages of the project
history (planning, pre-alpha, alpha), but it drops at the beta level. They generally
show a decreasing trend of coding violations as the project matures. Also, they
showed that changes in code readability are related only to some types of coding
violations. Using several readability indicators, Spinellis et al. (2016) observed that
the readability of Unix gradually improved. However, they also highlight that there
is insufficient evidence to claim that readability is still increasing.

We build on such studies and we extend them (i) by re-assessing the accuracy of
readability models in assessing readability transitions, (ii) by defining a readability
evolution model to describe such a process, and (iii) by conducting a large study
in which we consider 25 software systems.
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2.2 Software/Code Understandability

Code readability represents how easily information is conveyed to the developer.
Several works focused, instead, on measuring an apparently related concept, i.e.,
code understandability or comprehensibility, which represents to what extent the
information in the code is usable by the developer.

Capiluppi et al. (2004) defined a measure of understandability in OSS projects.
Specifically, this measure is computed on the history of 19 open source projects
in the following way: (i) the percentage of micro-modules located in the macro-
modules (i.e., the number of files within the directories), and (ii) the relative size
of the micro-modules. Their results demonstrate that, during the lifecycle of the
system, the understandability typically growns.

Misra and Akman (2008) used the properties proposed by Weyuker (1988) to
compare existing cognitive measures and they proposed some measures, i.e., the
Cognitive Weight Complexity Measure (CWCM). The authors assigned weights
to software components through the analysis of their control structures.

Thongmak and Muenchaisri (2011) evaluated the understandability of aspect-
oriented software through aspect-oriented software dependence graphs.

Subsequently, Chen et al. (2016) explored the COCOMO II Software Under-
standability factors with a study involving six graduate students, who were asked
to accomplish 44 maintenance tasks. This study shows that higher quality of the
code structure and higher self-descriptiveness lead to higher code quality.

Scalabrino et al. (2017, 2019) performed an in-depth analysis of 121 metrics
divided in three categories: (i) new code-related, (ii) documentation-related, and
(iii) developer-related. The authors correlated such metrics — singularly and com-
bining them — with several proxies for code understandability. Using a dataset of
444 human evaluations from 63 developers, the authors showed that none of such
metrics is related to understandability, including code readability. The interviews
with five professional developers suggest that code readability is important to them
whatsoever. The authors conclude that readability may affect understandability
in the long run, i.e., unreadable code may tire developers more quickly.

Trockman et al. (2018) performed a reanalysis of the dataset by Scalabrino
et al. (2017) by combining metrics with statistical modeling techniques. They
showed that the combination of metrics improve the assessment of code under-
standability, as also reported by Scalabrino et al. (2019).

3 Motivating Study: Survey of Developer Behavior

Any developer would clearly prefer working on readable code rather than on un-
readable code. It is less evident, instead, to what extent developers think that
making an effort to keep the source code readable is important and worthwhile
during software evolution. Previous studies investigated the developers’ perception
of code readability (Pantiuchina et al., 2018; Fakhoury et al., 2019): such studies
provide implicit evidence that code readability matters to developers: since some
commit messages mention the tentative improvement of code readability, it can be
deduced that developers strive to make the code more readable. To the best of our
knowledge, no previous work tried to look at explicit evidence that developers care
about code readability in software evolution. Therefore, before trying to define a
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model for describing code readability evolution, we wanted to understand if this
is a problem worth of investigation. For this reason, we run the motivating study
presented in this section.

3.1 Survey Design

The goal of our motivating study is to understand the perception of developers
about code readability, i.e., to what extent they consider readability important
while writing or reviewing code, and if they actively modify the code to make it
more readable.

With our motivating study we want to answer to the following research ques-
tion: “What is the developers’ perception of code readability? ”. To answer such a
research question, we surveyed software developers. The survey consisted in four
main questions:

Q1 When you write code, to what extent do you take into account code readability?
We ask this question to understand if developers think about code readability
while producing new code.

Q2 When reviewing code changes performed by your peers, to what extent do you
consider the impact of the change on code readability? We ask this question
to understand if developers think about readability when discussing about the
approval of a change.

Q3 How often do you make changes to improve code readability? With this ques-
tion we want to understand if developers sometimes pause their activities
specifically to improve the readability of previously written code.

Q4 How frequently did you experience a big change in code readability (positive or
negative) in the projects you worked on? With this final question we want to
understand what is the perceived frequency of readability changes. We later
compare the answers to this question to the results we obtain in our main study
(Section 6).

The first three questions (Q1, Q2, and Q3) could be answered using a 5-point
Likert scale, ranging from 1 (Never) to 5 (Always). Specifically, used the Likert
scale (Likert, 1932) because it is usually used to measure the level of agreement
or disagreement on a symmetric agree-disagree scale for a series of statements.

For the last question (Q4) we used a different 5-point Likert scale: the develop-
ers could choose one of the following options: (i) “Never ”, (ii) “For less than 25%
of the changes”, (iii) “For more than 25% and less than 50% of the changes”, (iv)
“For more than 50% and less than 75% of the changes”, (v) “For more than 75%
of the changes”.

Besides, we asked demographic questions, i.e., (i) education level, (ii) occupa-
tion, (iii) experience compared to the colleagues (following the recommendation
by Siegmund et al. (2014)), (iv) the three most used programming languages, and
(v) the number of contributions in open source and industrial projects.

We distributed the survey on social networks. We have chosen both general
purpose social networks, i.e., Facebook, Twitter and LinkedIn, and specific pur-
pose social networks, i.e., Reddit. For this last channel, we posted the invitation
on two sub-reddits in which surveys are allowed, i.e., r/SoftwareEngineering and
r/SampleSize.
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Fig. 1: Distribution of the answer to demographic questions.

Furthermore, we personally invited other possible participants (i.e., students
and developers in software companies).

3.2 Results

We obtained 122 responses, 77 of which by developers personally invited by the
authors (63.1%), 23 by Reddit users, 11 by Twitter users, and 11 by Facebook
users.

In Figure 1, we show the distribution of answers to the demographic questions
we asked. More than a 50% of the surveyed developers work in industry (65,
i.e., 53.3%), 28 work in Academia (23.0%), while 42 of them are students (i.e.,
34.4%). It is worth noting that developers could select also more than an option
for occupation (e.g., they could select both “Working in industry” and “Student”).

As for the education, 21 participants have a PhD (17.2%), 51 have a master’s
degree (41.8%), 36 have a bachelor’s degree (29.5%) a small part of them have an
high school degree (14, i.e., 11.5%) instead. The five most popular programming
languages commonly used by the developers are Java, Python, C++, JavaScript
or TypeScript, C. Most developers involved in the survey stated that they have a
similar programming experience compared to their colleagues (54, i.e., 44.3%); the
same amount of developers (54, i.e., 44.3%) think that they are more experienced
(40) or much more experienced (14) than their colleagues. Finally, only a small
portion of developers said that they are less (13) or much less (1) experienced than
their colleagues (11.4%).

We report in Figure 2 and Figure 3 the distribution of the answers to the
four questions. We use two different colors to highlight the differences between
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Fig. 3: Distribution of the answers to Q4.

developers who did not contribute to any collaborative project and developers
who contributed to at least an open source/industrial project. Figure 2 shows the
distribution of the answers to Q1, Q2, and Q3. About 44.6% of the participants
always take into account code readability when writing source code, while 41.7% of
them often consider it. We obtained similar results also forQ2: 34.0% of developers
say that they always consider readability while peer reviewing code and 46.6%
of them often take it into account. The same trend is visible for the answer to
Q3: 40.8% of developers say that they often perform changes to improve code
readability and 31.1% of them sometimes improve it.

Interestingly, we found that 26.2% of the participants stated that they con-
sider readability more when writing code than when reviewing code written by
their peers, while the opposite happens only in 13.1% of the cases. This suggests
that developers understand the importance of readability, but they consider it not
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a priority while peer-reviewing code. This can have many causes, e.g., it could
happen for social reasons (Palomba et al., 2018).

Finally, Figure 3 shows that many developers perceive that big changes in code
readability are not very frequent (less than a quarter of the files for 52 develop-
ers). Considering both Figure 2 and Figure 3, it is interesting to notice that the
contributions to projects do not seem to affect the answers given by the developers.

Such results show that readability is very important to developers since they (i)
take it into account while writing code, (ii) value it while reviewing code changes,
and (iii) make an effort to improve it, when possible. Besides, most of the devel-
opers perceive that readability rarely changes: we compare the perceived results
with the our empirical results in Section 6.

Summary of the motivating study. The large majority of surveyed
software developers care about code readability during software develope-
ment.

4 Modeling Code Readability Evolution

Developers use Version Control Systems (VCSs) to track evolution of software
projects. Different kinds of changes can be made to the source code: new features
are introduced (adaptive), errors are fixed (corrective) and the whole code structure
and quality is improved (perfective). Regardless of their type, changes may also
directly or indirectly affect code readability. Having a model that allows to track
the evolution of such a source code property may benefit practitioners in many
ways: for example, it can help developers while performing code reviews, i.e., a
warning may be raised when code readability deteriorates, or it can allow project
managers understanding how the code is evolving and when actions are needed.

Readability can be assessed at many granularity levels, ranging from small
snippets to whole modules or systems; anyway choosing the right granularity level
to model is not trivial. Having a fine-grained model (e.g., tracking readability at
method-level) would benefit developers when reviewing code and it would help
them understanding how single parts are evolving; but methods often appear and
disappear, they can be splitted and, therefore, keeping track of the changes would
be hard. Furthermore, having a coarse-grained model (e.g., tracking readability
at module/system-level) would be mostly helpful for project managers, since it
would give a generic idea on the health status of the project, and it would allow to
have longer tracks, since modules/systems appear and disappear more rarely; on
the contrary, this would provide small benefit to practitioners when developing or
reviewing code. We chose to model readability at file-level. Files are the smallest
units tracked by VCSs: it is easy to track their evolution, and they would be
reasonably fine-grained to help developers as well.

Before choosing the granularity level, it is important to choose how to measure
code readability to model code evolution. A readability score can be used: the avail-
able readability prediction tools (Buse and Weimer, 2010; Scalabrino et al., 2018),
by default, for each given artifact are able to output a continuous value ranging
between 0 and 1. Such a score represents the probability inferred by the classifier
that the specified file belongs to the class readable: as previously mentioned in
Section 2, such approaches are based on classification, i.e., they are designed to
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determine if a snippet is readable or unreadable. There is no empirical evidence
that such scores reflect the source code readability level and, to the best of our
knowledge, there is no continuous readability score for source code available in
the literature. Having an automated estimation of code readability is essential for
tracking code readability evolution since it would be impractical asking developers
to manually evaluate the readability of all the versions of all the files of a software
system. For this reason, we choose to use a discrete model and, specifically, we
model the code readability evolution of a file using a state diagram.

Let us consider a project P and its revision history, {P0, . . . , Pl}. A source file
f can be in four states in a given revision Pi:

1. non-existing , if the file does not exist in Pi;
2. other-name, if the file existed in the last revision, Pi−1, but with a different

name: this helps to detect both renaming and move operations;
3. readable, if the file exists in Pi and it is readable;
4. unreadable, if the file exists in Pi and it is unreadable.

The initial state of a file can be either non-existing or other-name. When a file
is created, there is a transition from non-existing to either readable or unreadable,
depending on its readability. When a file f is renamed or moved to fnew, the initial
state for fnew is other-name and the final state is readable or unreadable. It is
worth remarking that VCSs such as git, on which our studies described in Section
5 and Section 6 are based, do not explicitly keep track of the renaming/move
operations. On the other hand, git is able to detect renaming and move operations
when they occur: the heuristic used by git is based on textual similarity. Regardless
of the actual name, if in Pi−1 there are two files, foo and bar, and in Pi foo is
renamed in bar and bar is removed, git detects the renaming/move from foo to
bar instead of keeping the track from bari−1 to bari, which are different files.
In general, the renaming operations occur when (i) a file is renamed/moved, or
(ii) a folder which includes a file is renamed/moved. Even if git achieves good
results in tracking file renaming operations, if two files foo and bar are similar
enough and they are both renamed in the same commit (foo to foo2 and bar
to bar2), git could detect erroneous renaming operations, e.g., from foo to bar2
and from bar to foo2. For this reason, we use two different initial states (i.e., non-
existing and other-name) to avoid mixing the two operations. We did not take into
account file deletion operations (i.e., from either readable or unreadable to non-
existing): we assume that such an operation does not depend on the readability
of a file. Instead, we assume that file deletions are rather mostly triggered by
other needs, e.g., a feature is no longer needed. Finally, every change which is
not a creation, renaming/move or deletion operation, results in a transition from
{readable/unreadable} to {readable/unreadable}.

Given a revision Pi, we can safely assume that the state of a file in Pi only
depends on the previous revision Pi−1. In other words, when developers work on
a file, they reasonably react to the current state of the file and not to past states.
For example, when a bug is fixed, this happens because the file contained a bug in
Pi−1, regardless of the fact that the bag could be also in previous versions. Even if
code from past revisions can be reused in some circumstances (e.g., commits can
be reverted), this always happens in reaction to specific properties of the working
revision. This is true also for readability evolution: the fact that a file becomes
readable or unreadable depends on the current readability of the file rather than
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Fig. 4: States of a source code file.

on its past readability. Therefore, we can say that the readability evolution process
is memoryless and it satisfies the Markov property. This allows us to define our
readability evolution model as a Markov chain.

A Markov chain is a stochastic process in which the probability of transitioning
from a state A to a state B does not depend on states attained in the past, but only
on the last state. Given a Markov chain that can attain the states {S1, . . . , Sn},
for each couple of states Si and Sj there is a probability P (Sj |Si) of transitioning
from Si to Sj . Such probabilities are usually represented in a transition matrix,
i.e., a square matrix in which both rows and columns indicate the states and a
given cell (i, j) contains the probability P (Sj |Si). Transitions not allowed have
probability 0 in the transition matrix. The sum of each row of the matrix must be
equal 1. We use a time-homogeneous Markov chain for our model: we assume that
transition probabilities are constant in the time for a given project. This allows us
to have a single transition probability for each pair of states, i.e., Si and Sj . While
such an assumption may not always hold in practice (e.g., the probability that a
file is created unreadable may change with the evolution of a project), it helps us
building a model that is easier to understand. Generic discrete-time Markov chains
can be explored in future works in order to provide more fine-grained probabilities.

Figure 4 depicts the state diagram behind the Markov model we defined. The
Markov chain we use to model the readability evolution process requires the es-
timation of the conditional probabilities associated with each transition (i.e., the
transition matrix). Defining the transition matrix would allow us to understand
what is the probability that a file is created readable or unreadable, that a readable
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Table 1: Projects considered in our study.

Project Repository URL Commits LOC

Fullcontact4j https://github.com/fullcontact/fullcontact4j 234 6K
Hibernate Metamodel Generator https://github.com/hibernate/hibernate-metamodelgen 173 10K
NITHs https://github.com/niths/niths 1,396 24K
Apache Qpid https://github.com/apache/qpid 3,367 25K
JBoss Modules https://github.com/jboss-modules/jboss-modules 790 33K
JBoss Tools JBPM https://github.com/jbosstools/jbosstools-jbpm 283 37K
Nuxeo Runtime https://github.com/nuxeo-archives/nuxeo-runtime 1,174 55K
Apache Incubator-Skywalking https://github.com/apache/incubator-skywalking 2,533 47K
hlt-confdb https://github.com/cms-sw/hlt-confdb 1,040 72K
ParSeq https://github.com/linkedin/parseq 454 75K
Xnio https://github.com/xnio/xnio 1,096 77K
OpenEngSB https://github.com/openengsb/openengsb 4,896 92K
Apache Deltaspike https://github.com/apache/deltaspike 1,541 125K
SIB-dataportal https://github.com/SIB-Colombia/sib-dataportal 104 137K
Apache Falcon https://github.com/apache/falcon 1,755 154K
IGV https://github.com/chenopodium/IGV 2,351 157K
Undertow https://github.com/undertow-io/undertow 3,820 178K
Apache Isis https://github.com/apache/isis 3,529 266K
RxJava https://github.com/ReactiveX/RxJava 4,014 332K
Apache Beam https://github.com/apache/beam 5,373 376K
Apache Qpid-broker-j https://github.com/apache/qpid-broker-j 6,530 390K
Apache Tomcat https://github.com/apache/tomcat 15,045 468K
Apache Cxf https://github.com/apache/cxf 8,532 837K
Apache Flink https://github.com/apache/flink 5,327 880K
Apache Hadoop https://github.com/apache/hadoop 7,780 1.6M

Total 83K 6.5M

file becomes unreadable and vice versa and whether the fact that a file existing
in the past affects the probability that it is readable. We describe the process we
used to infer the probabilities of the readability evolution model of a given project
in Section 6.

5 Study I: Validation Of Readability Prediction In Software Evolution

The goal of our first study is to understand if readability prediction models, which
were typically experimented in the context of single snippets of code, are suited
for predicting readability evolution. As previously mentioned, the two problems
are different: while state-of-the-art readability models are binary, i.e., they classify
a snippet as readable or unreadable, the problem we try to tackle is a 8-class clas-
sification problem, where each type of transition previously mentioned in Section
4 is a class. This preliminary study will allow us to better frame the main study,
reported in Section 6.

Our first study is guided by the following research questions:

RQ1 Which readability values lead to classification errors? While the readability
prediction model we use is binary by definition, the tool returns the probability
that the given snippet is readable (according to the underlying logistic model).
There may be ranges of values for which the accuracy is not good enough. For
example, 0.51 would indicate that, while the prediction is readable, there is still
a 49% chance that it is unreadable. This research question aims at determining
the range of readability values measured by the state-of-the-art readability
classification approach in which the model wrongly classifies transitions. We
later use the results of this analysis for filtering out the transactions on which
the model is not accurate enough from the dataset we introduce in this paper:
we do this to make the results of our main study are more reliable.

https://github.com/fullcontact/fullcontact4j
https://github.com/hibernate/hibernate-metamodelgen
https://github.com/niths/niths
https://github.com/apache/qpid
https://github.com/jboss-modules/jboss-modules
https://github.com/jbosstools/jbosstools-jbpm
https://github.com/nuxeo-archives/nuxeo-runtime
https://github.com/apache/incubator-skywalking
https://github.com/cms-sw/hlt-confdb
https://github.com/linkedin/parseq
https://github.com/xnio/xnio
https://github.com/openengsb/openengsb
https://github.com/apache/deltaspike
https://github.com/SIB-Colombia/sib-dataportal
https://github.com/apache/falcon
https://github.com/chenopodium/IGV
https://github.com/undertow-io/undertow
https://github.com/apache/isis
https://github.com/ReactiveX/RxJava
https://github.com/apache/beam
https://github.com/apache/qpid-broker-j
https://github.com/apache/tomcat
https://github.com/apache/cxf
https://github.com/apache/flink
https://github.com/apache/hadoop
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RQ2 Is the readability prediction model suited to assess the readability transitions?
This research question aims at measuring the accuracy of the readability pre-
diction model we adopted to assess readability variation in the revision history
of a software system.

5.1 Data Collection

The context of our study is constituted by archival data (Runeson et al., 2012).
Specifically, we have studied the history of 25 Java open source projects. We report
in Table 1 the projects we selected, along with the number of lines of code—in
ascending order—in the last analyzed version. We chose projects with a reason-
ably big revision history (at least 100 commits) and big enough to encourage
developers keeping the code readable (at least 5K LOC in their last revision). In
total we considered the complete revision history of such projects until early 2018.
Specifically, we considered all the commits from the master branch of each project
(Easterbrook et al., 2008). In total, we focused our analysis on ∼83k commits.

Initially, for each project we extracted the history of each file f that ever ap-
peared in its revision history. Given a project P and a file f that appeared in
the revision history, we tracked its versions 〈f1, . . . , fn〉. To achieve this goal, we
analyzed the commit logs extracted from the git repositories of the projects. To do
this, we only focused on Java source files (i.e., files with extension .java). When
a file was created, we started tracking this given file and measuring its readabil-
ity: this resulted in the introduction of a new transition non-existing → {read-
able/unreadable}; when a file was modified, we measured its readability: in such
cases, we added a new transition {readable/unreadable}→ {readable/unreadable};
when a file was renamed, we introduced a new transition other-name → {read-
able/unreadable}.

We chose the tool by Scalabrino et al. (2018) since it implements a comprehen-
sive model for automatic code readability assessment, i.e., the one which achieves
the highest classification accuracy on all the datasets currently available (based
on the comparison performed with all the other state-of-the-art tools reported by
Scalabrino et al. (2018)).

All the approaches available in the literature, including the one we used, were
validated on small snippets (e.g., methods) (Buse and Weimer, 2008, 2010; Posnett
et al., 2011; Dorn, 2012; Scalabrino et al., 2016, 2018). In the current study we
want to estimate the readability of classes instead. Considering the whole classes
as snippets could mislead the classifier, since it is not trained on such samples. For
example, one of the features used in the model measures the consistency between
method-level comments and identifiers: while it would be possible to measure such
a feature at class-level by merging all the comments for all the methods, there is no
evidence that this feature is useful as well. To compute the readability of a given
class C with n methods C1, . . . , Cn we had several options for aggregating the
readability computed at method-level by the tool. We used the arithmetic mean
of C1, . . . , Cn to estimate the readability of C. The main drawback of using mean
is that it would not work properly in the cases in which there are many readable
methods (e.g., getters and setters) and a single unreadable method (Vasilescu
et al., 2011a). However, it is worth noting that any aggregation would have possibly
distorted the readability predicted for the class and result in a classification error.
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We discuss in Section 7 other alternatives that we discarded. Since we aggregate
the code readability measured at method-level, we exclude all the Java interfaces,
which usually only define the method signatures.

We excluded from our study the interfaces and the enums, which usually do
not provide the implementation of methods. We trained the classifier of Scalabrino
et al. (2018) with all the Java snippets and these are from the union of three read-
ability datasets currently available (Buse and Weimer, 2010; Dorn, 2012; Scal-
abrino et al., 2016), also performing features selection, as suggested in the original
paper. The tool and the datasets are the original ones released by the authors,
publicly available1.

The tool we used to estimate the readability of a class returns a value between 0
and 1 for a given snippet. Such a number indicates the probability that the snippet
is readable according to the logistic regression model: a readability of 1 means
that the classifier is confident that the snippet is readable, while a readability of
0 means that the model is confident that the snippet is unreadable. In general,
a value greater than 0.5 means that it is more likely that the snippet is readable
rather than unreadable. Therefore, we use 0.5 as a natural threshold: we say that
a file is readable if its readability is greater than or equals to 0.5 and unreadable
otherwise.

5.2 Experimental Procedure

To answer RQ1, we used the dataset provided by Pantiuchina et al. (2018). Such
a dataset includes 1,282 commits in which the developers explicitly mentioned
that they improved code readability. The dataset includes readability values mea-
sured before the commit (Rbefore) and after (Rafter), besides other metrics. As a
first step, we associated to each commit the corresponding transition (i.e., {read-
able|unreadable} → {readable|unreadable}) based on the Rbefore and Rafter, using
the same procedure we used to build our dataset. Then, we extracted from such
a dataset all the readability transitions classified by the tool as readable → un-
readable (i.e., so that Rbefore ≥ 0.5 and Rafter < 0.5). These are the only cases
for which we are reasonably sure that the tool made a classification mistake. In-
deed, if the predicted transition is unreadable → readable, this agrees with what
developers claimed; on the other hand, if the predicted transition is readable →
readable it can still be true that there was an improvement in readability; even if
the predicted transition is unreadable → unreadable, again, there might have been
an improvement to some methods, but not big enough to make the file become
totally readable.

Given the subset of transitions on which the tool strongly disagrees with the
developers’ claims, we manually analyzed such transitions and excluded the ones
on which the tool clearly did not make a mistake (i.e., the developer said that
the readability increased but it actually decreased). To do this, two of the authors
(with 7 and 10 years of Java programming experience) independently analyzed all
the selected transitions and they openly discussed the ones on which at least one of
them disagreed with the commit message. We discuss such cases in the results and

1 https://dibt.unimol.it/report/readability/

https://dibt.unimol.it/report/readability/
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we explicitly mention the reason why we decided that, for such cases, the devel-
opers were wrong. Finally, we considered the range [min(Rafter),max(Rbefore)]
as the range in which the tool most likely makes classification mistakes: exclud-
ing transitions which involve readability values within this range would allow us
to have no explicit classification mistakes on the dataset by Pantiuchina et al.
(2018), for which we have an oracle provided by the developers themselves. We
use min(Rafter) as lower-bound because the tool classified the class as unreadable
after the commit, i.e., Rafter will be lower than 0.5; similarly, we usemax(Rbefore)
as upper-bound since the tool classified the class as readable before the commit,
i.e., Rbefore will be higher than 0.5. We excluded all the transitions in our dataset
that had a readability value in such a range to minimize the classification error in
all the other research questions.

To answer RQ2, we considered a significant random stratified sample of our
dataset. Such a sample contained 271 transitions out of the total 346,337 (90%
confidence level, 5% confidence interval). The strata of the sample were all the eight
possible transitions types (i.e., created → readable, created → unreadable, other-
name → readable, other-name → unreadable, readable → unreadable, unreadable
→ readable, unreadable → unreadable, readable → readable).

Three of the authors, (with 5, 7, and 10 years of Java programming experience),
independently reported their agreement with both the binary readability values
computed by the tool for each transition (i.e., Rbefore and Rafter). To do this, we
used a 5-point Likert scale from -2 to +2, where “-2” means “I totally disagree with
the tool” (e.g., if the tool says that the commit is readable, the evaluator thinks
that it is unreadable without any doubt) and “+2” means “I totally agree with the
tool” (e.g., if the tool says that the commit is readable, the evaluator thinks that
it is readable without any doubt).

In a first phase, at least two authors evaluated each transitions from the sample.
Then, all the evaluators discussed the cases in which there was a disagreement
between the two evaluators involved in the first phase and after that, they resolved
the disagreements in an unanimous manner. In Section 5.3 we report the details
about the scores given by the annotators.

After performing a manual classification, we determined that transitions oc-
curred in the following way: we kept the binary values of Rbefore and Rafter when
the authors agreed with them (evaluation greater than 0) and we swapped them
when the evaluators disagreed (evaluation lower than 0). For example, if the tool
classified a given transition as readable → unreadable and the manual evaluation
was (-2, +2), we inferred that the actual transition occurred was unreadable →
unreadable (i.e., we swapped the first value).

Therefore, at the end of the manual evaluation, we had both a transition auto-
matically predicted by the tool and an oracle transition. We report precision and
recall on this sample of transitions for each class we took into account (i.e., each
transition type), using the following formulas:

precisiont =
TPt

TPt + FPt

recall t =
TPt

TPt + FNt

Ft = 2 ∗ precisiont ∗ recall t
precisiont + recall t

,
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Table 2: Datasets used in the first study.

Research Question Dataset No. of transitions

RQ1 Pantiuchina et al. (2018) 1,282
RQ2 Significant subset of our dataset 271

where:

– TPt (or true positive for transition t) indicates the number of cases for which
the tool classifies a transition as t and our evaluation confirms that;

– FPt (or false positive for transiton t) indicates the number of cases for which
the tool classifies a transition as t and our evaluation does not confirm that;

– FNt (or false negative for transiton t) indicates the number of cases for which
the tool classifies a transition as different from t and our evaluation does not
confirm that;

– TNt (or true negative for transition t) indicates the number of cases for which
the tool classifies a transition as different from t and our evaluation confirms
that.

We report in Table 2 a summary of the dataset we used to answer each research
question in this first study. We provide a replication package (Piantadosi et al.,
2020) with (i) the dataset we built and (ii) the data used to answer RQ1 and RQ2.

5.3 Empirical Study Results

We report in this section the results of our Study I for each research question.

5.3.1 RQ1: Which Readability Values Lead To Classification Errors?

We found 20 cases in which the readability model we used classified a transi-
tion from the dataset by Pantiuchina et al. (2018) as readable → unreadable (i.e.,
Rbefore ≥ 0.5 and Rafter < 0.5). After manually analyzing such cases, we ex-
cluded three of them: two file modifications2 were excluded because we could not
find the related commit in the repository: probably, such a commit was deleted by
the project contributors. We excluded another commit3: the modification consisted
exclusively in the deletion of Javadoc comments. It is not clear why removing doc-
umentation, specifically in that context, should have resulted in higher readability.
For this reason, we excluded such a change.

After filtering out such three data-points, we found that the interval in which
the tool makes all the mistakes is [min(Rafter) = 0.416,max(Rbefore) = 0.600].
From a initial dataset of 457,651, we excluded 111,314 transitions with readabil-
ity values in this range from our dataset, obtaining a new dataset with 346,337
transitions. We exclude a conspicuous portion of our dataset (∼24% of the transi-
tions) because of this filtering. However, we think that, in this context, it is more
important having a reasonably reliable measure rather than a large number of

2 Commit c69c7b in the project android_packages_apps_Settings.
3 Book-App-Java-Servlet-Ejb-Jpa-Jpql, commit 36861: https://git.io/fjLfp

https://git.io/fjLfp
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Table 3: Confusion matrix on the whole evaluated sample

Our evaluation
R → R R → U U → R U → U NE → R NE → U ON → R ON → U

T
oo

l

R → R 29 - - 5 - - - -
R → U 10 22 2 - - - - -
U → R 6 - 19 8 - - - -
U → U 3 3 - 28 - - - -
NE → R - - - - 30 4 - -
NE → U - - - - 14 20 - -
ON → R - - - - - - 34 -
ON → U - - - - - - 16 18

Table 4: Performance of the tool in transition classification.

Transition Precision Recall F-measure

non-existing → readable 88.2% 68.2% 76.9%
non-existing → unreadable 58.8% 83.3% 69.0%
other-name → readable 100.0% 68.0% 81.0%
other-name → unreadable 52.9% 100.0% 69.2%
readable → readable 85.3% 60.4% 70.7%
readable → unreadable 64.7% 88.0% 74.6%
unreadable → readable 57.6% 90.5% 70.4%
unreadable → unreadable 82.4% 68.3% 74.7%

data-points, also given the fact that we still have many data-points to analyze.
Moreover, besides allowing us to make no mistakes on the dataset by Pantiuchina
et al. (2018), the range we filter out is intuitively reasonable: we exclude transi-
tions on which, according to the model, there is more than ∼40% chance of error.
For example, if the predicted readability is 0.58, it means that the file is readable,
but there is a 42% chance that it is unreadable (i.e., the prediction is wrong): we
exclude such cases. It is worth highlighting that this does not mean that outside
such a range the tool is necessarily accurate: we only identified the range in which
the readability prediction was most unreliable.

Summary of RQ1. The tool by Scalabrino et al. (2018) is not reliable
when the output is in the range [0.416, 0.600].

5.3.2 RQ2: Is The Readability Prediction Model Suited To Assess The Readability
Transitions?

The raters disagreed in the evaluation they performed in 46 cases out of the 407
cases analyzed (11.3% of the cases), including the evaluation of the readability both
before and after the commit: as previously mentioned, such cases were discussed
by all the evaluators and consensus was reached on all of them. As for single
snapshots, the raters agreed with the tool in 82% of the cases, which result is in
line with the accuracy reported in the original study (i.e., ∼84%).

As for transitions, we report in Table 3 the confusion matrix for the 8-class
categorization problem. Also, in Table 4 we report precision, recall, and F-measure
obtained on the samples we manually evaluated. We found that the tool by Scal-
abrino et al. (2018) has a high precision in classifying some transitions, mostly the
ones in which it is involved the state readable (e.g., the transition non-existing →



18 Valentina Piantadosi et al.

readable has the 88.2% of precision with the 68.2% of recall), while it has a high
recall for other transitions, e.g., unreadable → readable, with 90.5% of recall and
57.6% of precision.

In general, the results show that the tool is less accurate when it is used to clas-
sify transitions compared to when it is used to classify single versions of a file. This
is due to the fact that this is a classification problem involving eight classes, which
is more difficult than a classification problem involving just two classes (i.e., read-
able and unreadable). The tool needs to correctly classify two versions of a file to
rightly classify a transition, which is harder than correctly classifying just a single
snapshot. It is worth noting that it is not trivial correctly classifying even transi-
tions readable → readable or unreadable → unreadable: it is necessary to correctly
predict two different snapshots of the same snippet, and a difference even in a sin-
gle feature used by the underlying model (e.g., line length) could possibly confuse
the model. Looking at the confusion matrix, it can be noticed that the tool often
confuses readable → readable transitions with readable → unreadable ones. For ex-
ample, this happens for a change to the class SpdySynStreamStreamSourceChannel
of Undertow4: in this case, some methods were removed and, while the remaining
ones are clearly readable, the tool wrongly classified the constructor, which has a
very long line for the signature (167 characters). Probably, the same mistake was
done in the previous version, but the other methods avoided to wrongly classify
the whole class.

Summary of RQ2. There is a loss of accuracy when using readability
prediction tools for transitions instead of single versions.

6 Study II: Readability Evolution

The goal of our empirical study is to understand how readability evolves in software
development, i.e., how frequently code readability changes and why it changes.
The perspective is that of a researcher who wants to understand how readability
is managed in practice and that of a software quality consultant who wants to
recommend how to avoid readability deterioration.

Our empirical study is guided by the following research questions:

RQ3 How often does readability change? This research question aims at under-
standing how frequently readable code becomes unreadable and vice versa.
Considering Q3 in Section 3, with this research question we also want to verify
if there is a match between what people say with what people do (Easterbrook
et al., 2008; Ebert et al., 2019).

RQ4 How and why does code readability change? With this research question
we take a closer look at the source code modifications leading to readability
changes in order to understand (i) which kind of changes make code readability
evolve and (ii) why code readability changes.
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Table 5: Dataset used in the second study.

Research Question Dataset No. of transitions

RQ3 Our new dataset (with bootstrapping) 346,337
RQ4 Subset of our dataset 57
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Fig. 5: The process we used to compute the transition probability of a project.

6.1 Experimental Procedure

To answer both our research questions, we used the dataset we collected (described
in Section 5.1). We report in Table 5 a summary of the datasets we have used to
answer each research question.

To answer RQ3, considering the history of each file f we associated to each
revision a transition in the readability evolution model described in Section 4. We
perform such an analysis at commit-level, i.e., at the finest-grained level achievable
when looking at the revision history of a project. Other choices could have been
made, such as considering a more coarse-grained level (e.g., release-level). We
think that the finest-grained analysis is more useful for developers who want to
continuously check if readability is deteriorating: for example, such a model could
be used in Continuous Integration pipelines to allow developers finding issues and
fixing them as soon as possible.

File modifications do not necessarily change the readability, i.e., the model
contains self-loops from readable to readable, and from unreadable to unreadable.
Figure 5 summarizes the procedure we used to compute the transition probability
of a project.

We counted the frequencies of all the transitions we observed in each project
and used them to compute the probabilities of transition in code readability evo-
lution model. We estimated the probability P (Sj |Si) as:

P (Sj |Si) =
freq(Si → Sj)∑
Sk
freq(Si → Sk)

4 Undertow, commit f8fcc: https://git.io/Jf1pt

https://git.io/Jf1pt
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We report the probabilities we inferred from our data for all the projects taken
individually. We also report the percentage of files that were always readable (fi
readable ∀fi), always unreadable (fi unreadable ∀fi), and that changed readability
(∃fi readable and ∃fj unreadable). To account for the possible errors made by the
tool, we used bootstrapping (DiCiccio and Efron, 1996) to compute the confidence
intervals of each probability.

Specifically, we used the m-out-of-n bootstrap (Chernick, 2011), where n is the
original sample size andm is lower than n. We do not use the original bootstrapping,
because our samples contain many data points (346,337), and we set m = 0.8n
(Chernick, 2011). Therefore, we extracted 10,000 subsamples with repetition of m
transitions file from our dataset for each single project and, for each of them, we
estimated P (Sj |Si). Given the resulting distribution, we report the 90% confidence
interval, i.e., the 5% and 95% quantiles.

Furthermore, we try to understand if there is a correlation between the percent-
age of files that are created unreadable and remain unreadable with the number
of commits of the projects, the number of files, and the number of contributors
at the last commit we analyzed. To do this, we report the Kendall’s τ , along with
the p-values, correct for multiple comparisons using the method of Benjamini and
Hochberg (1995). The p-values for correlations represent evidence against the null-
hypothesis that the correlation between the ranks of the variables we study equals
0 (Sheskin, 2007). Therefore, we use p-values only as a sanity check: significant
correlation may still be very low and practically nonexistent.

Finally, we specifically focus on files that experienced a change in terms of
code readability and we try to verify if it is possible to characterize such changes
in terms of number of files modified in the commit and number of changed lines.
As a first step, we extract the number of modified files and changed lines (added
or removed) from each commit of the revision history of each project. We did this
considering only files that had at least a readability increase or decrease in their
history (i.e., readable → unreadable or unreadable → readable). Then, we divided
the data we gathered in three groups:

– R+: transitions representing an increase of code readability (i.e., transitions
readable → unreadable);

– R−: transitions representing a decrease of code readability (i.e., transitions
unreadable → readable);

– R0: transitions that did not result in a readability change (i.e., transitions
readable → readable and unreadable → unreadable).

Then, we formulate three hypotheses for each property we compare (i.e., num-
ber of modified files, number of changed lines, number of added lines, number of
removed lines): (i) there is a difference between commits that increase readability
(R+) and commits that decrease readability (R−); (ii) there is a difference between
commits that increase readability (R+) and commits that do not change readability
(R0); (iii) there is a difference between commits that decrease readability (R−) and
commits that do not change readability (R0). We use the the Wilcoxon rank-sum
test (Wilcoxon, 1945) to check such hypotheses: specifically, the null hypotheses
are that there is no significant difference between such pairs of groups. We per-
formed the tests for each project separately and also for all the whole dataset. We
do not include in the comparison groups containing the states created and other-
name since we are interested in characterizing changes in the evolution rather than
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at the introduction of a file. We reject a null hypothesis if the p-value is lower than
0.05. We adjust the p-values obtained for the group of hypotheses related to each
metric using the Benjamini and Hochberg (1995) method. We also compute the
effect size to quantify the magnitude of the significant differences we find. We use
Cliff’s delta (Cliff, 1993) since it is non-parametric. Cliff’s d lays in the interval
[-1, 1]: the effect size is negligible for |d| < 0.148, small for 0.148 ≤ |d| < 0.33,
medium for 0.33 ≤ |d| < 0.474, and large for |d| ≥ 0.474. If d > 0, it means that
the first group is larger than the second, while the opposite happens otherwise.

To answer RQ4, we selected the files that, during the history of the projects,
had a big variation in code readability in terms of the continuous readability score,
i.e., files with minimum readability lower than or equal to 0.25 and maximum
readability higher than or equal to 0.75. Two of the authors manually analyzed
the history of these files. For each change we annotated:

– the type of change that the developer did to the specific file among adaptive
(new feature implementation), corrective (bug fixing), and perfective (refactor-
ing and code cleaning);

– why readability changed (e.g., comments added or long lines removed), focusing
on three aspects: visual, structural, and textual (Scalabrino et al., 2018).

In case of disagreement, two authors performed an open discussion to resolve
conflicting cases. We used the results of the analysis to formulate suggestions,
available in Section 6.2, on how to avoid readability deterioration and annotations
in order to improve source code readability.

In Figure 6 we summarize the process used for our two studies. Our replication
package (Piantadosi et al., 2020) contains the datasets we used to answer RQ3 and
RQ4 to foster the replicability of this study.

6.2 Empirical Study Results

We report in this section the results of our Study II for each research question.

6.2.1 RQ3: How Often Does Readability Change?

Table 6 and Table 7 show the probabilities estimated for the 25 projects we con-
sidered. We report in the table the mean probability estimation over the 10,000
bootstrap subsamples, along with the 90% confidence intervals below each estima-
tion, in the form [5% quantile, 95% quantile]. The vast majority of the files are
created readable. In eighteen projects out of twenty-five, the probability of creating
an unreadable file is lower than 10%. However, there are exceptions: in Apache
Incubator-Skywalking and Apache Beam, about a quarter of the files are created
unreadable, while in ParSeq this percentage is even higher (more than a 40%). We
discuss some examples for such a project later.

In general, we did not observe significant differences for file renaming as com-
pared to file creation in terms of the resulting readability; for some projects such
as Apache Qpid and Apache Flink, however, the probability of transitioning from
other-name to unreadable is higher as compared to the probability of transitioning
from non-existing to unreadable. For such projects, class rename/move refactoring
operations are either more likely to be performed on unreadable files or they are
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Fig. 6: Process of Study I and Study II.

performed while also changing other aspects of the source code, which make such
files unreadable.

File modifications rarely result in a change in code readability. Usually, read-
able files remain readable, while unreadable files remain unreadable. We observed
that, generally, it is more likely that unreadable files become readable than the
opposite. In some projects, such as Apache Tomcat, IGV, Xnio, and hlt-confdb,
readability improvement seems a priority: the probability that unreadable files
become readable is higher than 10%. It is worth noting that such projects also
achieve low probabilities of introducing unreadable files. Nevertheless, it is still
likely that such a phenomenon is unconscious in such projects, i.e., the develop-
ers do not make an effort to improve readability, but it is a side effect of their
regular work, as reported in previous studies (Bavota et al., 2015; Chatzigeorgiou
and Manakos, 2014; Tufano et al., 2017; Silva et al., 2016; Maldonado et al., 2017;
Zampetti et al., 2018). We provide more details about this aspect in our qualitative
analysis.

The probabilities of readability changes we reported regard a single commit.
It could be argued that readability changes are unlikely simply because most of
the changes are small and thus they may affect readability only in the long run.
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Table 6: Mean readability evolution probabilities and 90% confidence intervals of
the bootstrap subsamples (file introduction).

Project non-existing→ other-name→
readable unreadable readable unreadable

Apache Beam 78.4% 21.6% 73.7% 26.3%
[77.3%, 79.6%] [20.4%, 22.7%] [71.0%, 76.4%] [23.6%, 29.0%]

Apache Cxf 90.7% 9.3% 97.8% 4.1%
[90.1%, 91.3%] [8.6%, 10.0%] [93.0%, 100%] [2.3%, 8.1%]

Apache Deltaspike 93.4% 6.6% 100.0% 0.0%
[92.2%, 94.5%] [5.5%, 7.8%] [100.0%, 100.0%] [0.0%, 0.0%]

Apache Falcon 87.4% 12.5% 91.8% 8.2%
[85.9%, 89.0%] [11.0%, 14.1%] [86.7%, 96.3%] [3.7%, 13.3%]

Apache Flink 81.3% 18.7% 64.9% 35.1%
[80.5%, 82.1%] [17.9%, 19.5%] [58.8%, 70.8%] [29.2%, 41.2%]

Apache Hadoop 91.4% 8.6% 96.6% 3.4%
[90.8%, 92.0%] [8.0%, 9.2%] [94.4%, 98.6%] [1.4%, 5.6%]

Apache I.-Skywalker 75.8% 24.2% 75.6% 24.4%
[75.0%, 76.5%] [23.4%, 25.0%] [73.6%, 77.5%] [22.5%, 26.4%]

Apache Isis 93.0% 7.0% 90.4% 9.6%
[92.5%, 93.5%] [6.4%, 7.5%] [87.8%, 92.7%] [7.2%, 12.1%]

Apache Qpid-b. 91.1% 8.9% 100.0% 0.0%
[90.5%, 91.7%] [8.2%, 9.5%] [100.0%, 100.0%] [0.0%, 0.0%]

Apache Qpid 91.6% 8.4% 79.8% 21.0%
[90.8%, 92.4%] [7.6%, 9.2%] [61.5%, 94.7%] [6.7%, 38.5%]

Apache Tomcat 95.7% 4.3% 100.0% 0.0%
[95.0%, 96.4%] [3.6%, 4.9%] [100.0%, 100.0%] [0.0%, 0.0%]

Fullcontact4j 95.4% 4.6% 94.6% 6.8%
[93.2%, 97.4%] [2.6%, 6.8%] [87.5%, 100.0%] [2.8%, 14.3%]

Hibernate Metamodel G. 97.6% 2.4% // //
[95.8%, 99.1%] [0.9%, 4.2%]

hlt-confdb 91.4% 8.6% // //
[88.1%, 94.4%] [5.5%, 11.9%]

IGV 93.5% 6.5% 100.00% 0.0%
[92.0%, 94.9%] [5.1%, 8.0%] [100.00%, 100.00%] [0.0%, 0.0%]

JBoss Modules 91.9% 8.1% 100.00% 0.0%
[89.2%, 94.5%] [5.5%, 10.8%] [100.00%, 100.00%] [0.0%, 0.0%]

JBoss Tools JBPM 95.2% 4.8% // //
[93.5%, 96.8%] [3.1%, 6.5%]

NITHs 93.8% 6.2% 89.2% 10.8%
[92.0%, 95.5%] [4.5%, 8.0%] [82.1%, 95.4%] [4.7%, 17.8%]

Nuxeo Runtime 93.4% 0.6% 93.6% 6.4%
[92.0%, 94.7%] [0.5%, 0.8%] [89.5%, 97.2%] [2.8%, 10.5%]

OpenEngSB 89.8% 10.1% 92.1% 7.9%
[89.0%, 90.6%] [9.4%, 10.9%] [90.9%, 93.3%] [6.7%, 9.1%]

ParSeq 58.7% 41.3% 81.3% 20.5%
[55.7%, 61.7%] [38.3%, 44.3%] [61.5%, 100.0%] [7.1%, 40.0%]

RxJava 91.7% 8.3% 87.5% 12.5%
[91.0%, 92.5%] [7.5%, 9.0%] [84.5%, 90.3%] [7.1%, 15.5%]

SIB dataportal 95.7% 4.3% // //
[94.4%, 97.0%] [3.1%, 5.5%]

Undertow 78.9% 21.1% 97.8% 3.9%
[77.1%, 80.1%] [19.3%, 22.8%] [93.2%, 100.0%] [2.2%, 7.9%]

Xnio 90.4% 9.6% // //
[88.0%, 92.7%] [7.2%, 12.0%]

To look more in depth into this, we also computed the percentage of files that (i)
are created readable and remain readable, (ii) are created unreadable and remain
unreadable, (iii) change readability at least once during the evolution. Table 8
shows the aforementioned results: only a minority (usually less than 5%) of the
files changes its readability during the history of a project, while 88.9% of the files
remain readable and 9.9% of them are always unreadable, on average.

We found that the number of commits is significantly correlated with the num-
ber of unreadable files (Kendall τ 0.31, corrected p-value 0.049): this suggests
that the longer is the history of the project, the higher the risk of introducing
unreadable code in the project. Anyway, such a correlation is low, in absolute
terms. We get a stronger correlation with the number of contributors: in this case,
the Kendall τ is 0.43 and the corrected p-value is 0.009: this suggests that the
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Table 7: Mean readability evolution probabilities and 90% confidence intervals of
the bootstrap subsamples (file evolution).

Project readable→ unreadable→
readable unreadable readable unreadable

Apache Beam 99.8% 0.2% 0.6% 99.4%
[99.8%, 99.9%] [0.1%, 0.2%] [0.4%, 0.7%] [99.3%, 99.6%]

Apache Cxf 99.8% 0.2% 1.9% 98.1%
[99.8%, 99.9%] [0.1%, 0.2%] [1.4%, 2.4%] [97.6%, 98.6%]

Apache Deltaspike 99.8% 0.2% 4.9% 95.1%
[99.6%, 99.9%] [0.1%, 0.4%] [2.1%, 7.9%] [92.1%, 97.9%]

Apache Falcon 99.6% 0.4% 0.9% 99.1%
[99.4%, 99.8%] [0.2%, 0.6%] [0.4%, 1.4%] [98.6%, 99.6%]

Apache Flink 99.6% 0.4% 2.1% 97.9%
[99.6%, 99.7%] [0.2%, 0.4%] [1.6%, 1.4%] [97.4%, 98.3%]

Apache Hadoop 99.9% 0.1% 0.9% 99.1%
[99.9%, 99.9%] [0.0%, 0.1%] [0.5%, 1.3%] [98.7%, 99.4%]

Apache I.-Skywalker 99.4% 0.6% 0.7% 99.3%
[99.2%, 99.5%] [0.4%, 0.7%] [0.4%, 0.9%] [99.1%, 99.5%]

Apache Isis 99.8% 0.1% 3.7% 96.3%
[99.8%, 99.9%] [0.0%, 0.2%] [2.6%, 4.8%] [95.2%, 97.4%]

Apache Qpid-b. 99.9% 0.1% 1.9% 98.1%
[99.8%, 99.9%] [0.0%, 0.2%] [1.4%, 2.5%] [97.5%, 98.6%]

Apache Qpid 99.9% 0.1% 2.5% 97.5%
[99.8%, 99.9%] [0.0%, 0.1%] [1.6%, 3.4%] [96.6%, 98.4%]

Apache Tomcat 99.9% 0.1% 5.6% 94.4%
[99.9%, 99.9%] [0.0%, 0.1%] [3.8%, 7.5%] [92.5%, 96.2%]

Fullcontact4j 99.5% 0.5% 0.0% 100.0%
[98.8%, 100.0%] [0.2%, 1.2%] [0.0%, 0.0%] [100.0%, 100.0%]

Hibernate Metamodel G. 100.0% 0.0% 0.0% 100.0%
[100.0%, 100.0%] [0.0%, 0.0%] [0.0%, 0.0%] [100.0%, 100.0%]

hlt-confdb 99.9% 0.1% 6.3% 93.8%
[99.8%, 100.0%] [0.0%, 0.2%] [2.3%, 11.2%] [88.8%, 97.8%]

IGV 99.7% 0.3% 5.1% 94.9%
[99.5%, 99.8%] [0.1%, 0.4%] [2.5%, 7.9%] [92.1%, 97.4%]

JBoss Modules 99.9% 0.1% 2.8% 97.8%
[99.8%, 100.0%] [0.0%, 0.2%] [1.2%, 5.7%] [94.5%, 100.0%]

JBoss Tools JBPM 97.9% 0.2% 0.0% 100.0%
[96.3%, 99.2%] [0.1%, 0.4%] [0.0%, 0.0%] [100.0%, 100.0%]

NITHs 99.9% 0.1% 3.0% 97.0%
[99.8%, 100.0%] [0.0%, 0.2%] [0.9%, 5.7%] [94.3%, 99.2%]

Nuxeo Runtime >99.9% 0.1% 2.9% 97.1%
[99.9%, 100.0%] [0.0%, 0.1%] [1.0%, 4.5%] [95.6%, 100.0%]

OpenEngSB 99.8% 0.2% 1.6% 98.4%
[99.7%, >99.8%] [0.1%, 0.3%] [1.1%, 2.1%] [97.9%, 98.9%]

ParSeq 99.1% 0.9% 0.8% 99.6%
[98.4%, 99.6%] [0.4%, 1.6%] [0.5%, 1.6%] [97.9%, 98.9%]

RxJava 100.0% <0.1% 2.4% 97.6%
[99.9%, 100.0%] [0.0%, 0.1%] [1.4%, 3.4%] [96.6%, 98.6%]

SIB 99.7% 0.05% 0.0% 100.0%
[99.2%, 100.0%] [0.03%, 1.1%] [0.0%, 0.0%] [100.0%, 100.0%]

Undertow 99.6% 0.4% 0.8% 99.1%
[99.5%, 99.8%] [0.2%, 0.5%] [0.4%, 1.2%] [98.8%, 99.5%]

Xnio 99.7% 0.3% 5.1% 94.9%
[99.5%, 99.9%] [0.1%, 0.5%] [1.9%, 8.7%] [91.3%, 98.1%]

larger the development team, the higher the number of unreadable files. Finally,
we found a weak and non-significant correlation with the number of files (τ =
0.21, corrected p-value = 0.16): this suggests that the size of the project is not one
of the most important factors that affects the percentage of unreadable files in a
project. It is worth remarking that, since correlations do not imply causation, the
real existence of the relationships we found using such a simple analysis should be
properly verified with more in-depth analyses in future work.

Table 9 shows the results of our analysis regarding the characteristics of read-
ability evolution transitions for all the data-points, while we report in Table 10 and
Table 11 a the results at project-level. In Figure 7 we report the boxplots of files
changed, lines changed, lines added and lines removed for each group, adjusted for
skewed distributions (Hubert and Vandervieren, 2008).
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Table 8: Files always readable, always unreadable or both readable and unreadable
in the revision history of the projects.

Project Readable Unreadable Both

Apache Beam 79.0% 19.5% 1.5%
Apache Cxf 90.3% 8.6% 1.0%
Apache Deltaspike 93.2% 5.8% 0.9%
Apache Falcon 86.6% 12.3% 1.2%
Apache Flink 80.8% 17.7% 1.5%
Apache Hadoop 91.3% 8.2% 0.6%
Apache Incubator-S. 77.2% 21.4% 1.4%
Apache Isis 92.6% 6.7% 0.7%
Apache Qpid-broker-j 90.3% 8.8% 0.9%
Apache Qpid 91.4% 7.8% 0.8%
Apache Tomcat 95.1% 3.5% 1.4%
Fullcontact4j 93.0% 5.7% 1.3%
Hibernate Metamodel Gen. 97.6% 2.4% 0.0%
hlt-confdb 90.5% 6.4% 3.0%
IGV 92.1% 5.5% 2.4%
JBoss Modules 91.7% 6.8% 1.1%
JBoss Tools JBPM 94.2% 4.6% 1.2%
NITHs 93.0% 5.6% 1.4%
Nuxeo Runtime 94.4% 5.1% 0.5%
OpenEngSB 89.2% 9.4% 1.4%
ParSeq 64.7% 33.9% 1.4%
RxJava 92.3% 7.1% 0.6%
SIB-dataportal 95.9% 4.0% 0.1%
Undertow 77.1% 20.7% 2.2%
Xnio 89.2% 9.1% 1.7%

Table 9: Comparison of characteristics of the commits (number of files and lines
changed) among different transaction types.

Files changed Lines changed
Comparison p-value Cliff’s d Comparison p-value Cliff’s d

R+ R− 0.308 // R+ R− 0.153 //
R+ R0 0.060 // R+ R0 < 0.001 0.513 (large)
R− R0 < 0.001 -0.099 (negligible) R− R0 < 0.001 0.527 (large)

Lines added Lines removed
Comparison p-value Cliff’s d Comparison p-value Cliff’s d

R+ R− 0.017 -0.095 (negligible) R+ R− 0.843 //
R+ R0 < 0.001 0.385 (medium) R+ R0 < 0.001 0.375 (medium)
R− R0 < 0.001 0.478 (large) R− R0 < 0.001 0.319 (small)

It is possible to notice that there is a low number of significant differences
in terms of number of changed files among the groups when taking into account
single projects; on the other hand, there are significant differences when taking
into account all the data-points. Such differences, however, are only negligible in
terms of effect size. This shows that the number of files modified in a commit are
not related to the presence of changes in code readability. Instead, it can be noticed
that, in general, there is no significant difference when comparing R+ and R− in
terms of modified lines, except for the comparison on the lines added (p-value '
0.017), which is negligible anyway. The difference is always significant (p-value <
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Fig. 7: Adjusted boxplots of files changed, lines changed, lines added and lines
removed for each group (without outliers).

0.001) when comparing (i) R+ and R0, and (ii) R− and R0, even if with different
values of Cliff’s d.

Table 10 reports the effect size for the significant differences (by project) among
the three compared groups in terms of total number of files changed and total
number of lines changed; in Table 11 we report the same kind of comparison in
terms of lines added and removed. In both the tables, we do not report values
(cells marked as “//”) for which the difference is not significant (p-value > 0.05).
We could not compute the results for the project Hibernate Metamodel Generator
because it only has transitions that do not change readability (i.e., readable →
readable or unreadable → unreadable).

In general, we observed that changes that either improve or reduce code read-
ability are different than changes that do not change readability in terms of number
of modified lines (both added and removed). Specifically, it is more likely that code
readability changes when many lines are added to or removed from the source file.
Smaller changes, instead, are less likely to result in a readability modification.

The Case of ParSeq. We analyzed more in depth the project with a larger
quantity of unreadable files to understand what caused this, i.e., LinkedIn ParSeq.
ParSeq is a framework that allows to simplify the writing of asynchronous code.

It is worth mentioning that, also given its nature, such a project makes heavy
usage of the functional programming features introduced in Java 8 (e.g., lambda
expressions): if not used sparingly, such features may make the code difficult to
read. This is the case of the class Par2Task5: the nested lambda expressions and

5 Linkedin ParSeq, commit f3d9c: https://git.io/JfiqM

https://git.io/JfiqM
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Table 10: Comparison on the subset with Wilcoxon rank-sum for various groups.

Project Files changed Lines changed
R+ vs. R− R+ vs. R0 R− vs. R0 R+ vs. R− R+ vs. R0 R− vs. R0

Ap. Beam // // -0.425 (M) -0.352 (M) 0.386 (M) 0.553 (L)
Ap. Cxf // // // // 0.523 (L) 0.677 (L)
Ap. Deltaspike // // // // 0.857 (L) 0.683 (L)
Ap. Falcon // // // // 0.493 (L) //
Ap. Flink 0.257 (S) // -0.206 (S) // 0.440 (M) 0.462 (M)
Ap. Hadoop // -0.367 (M) -0.283 (S) // 0.479 (L) 0.590 (L)
Ap. Inc.-S. // -0.277 (S) // // 0.471 (M) 0.470 (M)
Ap. Isis // // // // 0.676 (L) 0.399 (M)
Ap. Qpid-b. // // // // 0.600 (L) 0.608 (L)
Ap. Qpid // // // // // 0.500 (L)
Ap. Tomcat // // // // 0.566 (L) 0.613 (L)
Fullcontact4j // 0.861 (L) // // // //
Hib. Meta. Gen. // // // // // //
hlt-confdb // // // // // 0.702 (L)
IGV // // // // 0.542 (L) 0.719 (L)
JBoss Modules // // // // // //
JBoss JBPM // // // // 0.873 (L) //
NITHs // // // // // //
Nuxeo Runtime // // // // // //
OpenEngSB -0.371 (M) -0.477 (M) -0.255 (S) // 0.538 (L) 0.294 (S)
ParSeq // // // // 0.556 (L) //
RxJava // // // // 0.518 (L) 0.527 (L)
SIB-dataportal // // // // // //
Undertow // // // // 0.636 (L) 0.710 (L)
Xnio // 0.733 (L) // // 0.876 (L) 0.592 (L)

Table 11: Comparison on the subset with Wilcoxon rank-sum for various groups.

Project Lines added Lines removed
R+ vs. R− R+ vs. R0 R− vs. R0 R+ vs. R− R+ vs. R0 R− vs. R0

Ap. Beam -0.547 (L) 0.237 (S) 0.596 (L) // 0.515 (L) 0.313 (S)
Ap. Cxf // 0.487 (L) 0.532 (L) -0.326 (S) // 0.408 (M)
Ap. Deltaspike // 0.759 (L) 0.660 (L) // 0.823 (L) //
Ap. Falcon // // // // // //
Ap. Flink // 0.323 (S) 0.432 (M) // 0.435 (M) 0.265 (S)
Ap. Hadoop // 0.494 (L) 0.544 (L) // // //
Ap. Inc.-S. // 0.469 (M) 0.355 (M) // 0.280 (S) 0.425 (M)
Ap. Isis // 0.386 (M) 0.348 (M) 0.436 (M) 0.645 (L) 0.302 (S)
Ap. Qpid-b. -0.306 (S) 0.254 (S) 0.576 (L) // 0.541 (L) 0.356 (M)
Ap. Qpid // // 0.520 (L) // // //
Ap. Tomcat -0.411 (M) // 0.551 (L) // 0.553 (L) 0.347 (M)
Fullcontact4j // // // // // //
Hib. Meta. Gen. // // // // // //
hlt-confdb // // // // // 0.726 (L)
IGV // // 0.709 (L) // 0.629 (L) //
JBoss Modules // // 1.000 (L) // // //
JBoss JBPM // 0.738 (L) // // 0.651 (L) //
NITHs // // // // // //
Nuxeo Runtime // // // // // //
OpenEngSB // 0.497 (L) 0.322 (S) // // //
ParSeq // // // // // //
RxJava // // 0.501 (L) // // //
SIB-dataportal // // // // // //
Undertow // 0.421 (M) 0.528 (L) // 0.504 (L) 0.309 (S)
Xnio // 0.896 (L) // // // //
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the bad naming of the identifiers (e.g., p or o) make such a class very hard to read.
Then, we found that developers commonly used unpopular coding conventions:
for example, a leading underscore is used for private fields (e.g., “_rand”), which
is more common in other programming languages, such as Python.

It can be noticed that such an uncommon convention (leading underscore) is
used also for method names, as it is possible to observe in the previously mentioned
class Par2Task. Specifically, let us consider this line:

return map(tuple -> f.apply(tuple._1(), tuple._2()));

In this case, there is a call to two public methods that contain a leading under-
score. It is worth noting that the presence of such methods does not only negatively
affect the readability of the class that contains them, but also the readability of
the classes that use them, such as the one previously mentioned.

Looking at the evolution of files in ParSeq, we noticed that, in general, devel-
opers first try to quickly implement features and then they optionally refine the
classes and improve their quality, including readability. For example, our dataset
contains 25 readability transition for the class BatchingStrategy: such a class was
created unreadable and it remained unreadable for 14 transitions; then, a commit
adds a transition unreadable → readable and, finally, this file remains readable
for other 9 transitions. In the second commit6, the file completely misses Javadoc
comments. Later, in commit fc27e7 developers added Javadoc comments to the
class and, finally, in commit 8d7a38, the file became readable (i.e., unreadable →
readable), thanks to other small improvements to the code structure. However,
such an approach, as evidence shows, does not always work, because only a small
percentage of unreadable file of such a project become readable (i.e., 0.8%). All
the others remain unreadable.

For example, this is the case of class ClassifierDriver. This file is involved
in 3 transitions. One of the commits that modify such a file is a97589: even if
such a change is specifically aimed at improving the readability by unifying code
formatting, this is not enough to make the file readable.

Summary of RQ3. Code readability of an individual file rarely changes
during the evolution of a project.

6.2.2 RQ4: How And Why Does Code Readability Change?

We found that 57 files had extreme readability scores in their history (i.e., both
< 0.25 and > 0.75). For such files, in total, we considered 82 commits and com-
mit sequences that changed code readability. We found 16 commits and 1 commit
sequence for which we did not agree with the output of the tool (i.e., the tool mis-
classified code readability). We excluded such cases and, therefore, we considered
65 commits and commit sequences.

We found that most of the readability changes (82.0% of the cases) were caused
by adaptive changes, 14.7% of them were caused by perfective changes, while only

6 Linkedin ParSeq, commit ce2ae: https://git.io/Jf6jp
7 Linkedin ParSeq, commit fc27e: https://git.io/Jfim5
8 Linkedin ParSeq, commit 8d7a3: https://git.io/JfwPs
9 Linkedin ParSeq, commit a9758: https://git.io/JfwXR

https://git.io/Jf6jp
https://git.io/Jfim5
https://git.io/JfwPs
https://git.io/JfwXR
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3.3% of them happened because of corrective changes. As it could be expected, all
the perfective changes improved code readability: it is interesting, however, that
even perfective changes not explicitly aimed at improving code readability may
have that as a side-effect. We also found that both of the two corrective changes we
analyzed improved code readability: it is well known that, sometimes, developers
refactor code before fixing bugs; it is less expected, instead, that corrective changes
usually improve code readability. While such findings may seem expected, to the
best of our knowledge this is the first piece of empirical work that relates the
type of changes to code readability. This kind of evidence is important since, as
previous work shows (Pantiuchina et al., 2018), developers’ perception may not
be always well captured by code metrics: it could happen that developers think
they are improving some aspects of source code, while this is not case, or, on the
other hand, it could happen that code metrics are not sufficiently sophisticated to
capture the improvement. We report below some interesting cases we found.

Refactoring improved readability. Six perfective changes out of nine are
from Apache Incubator-Skywalking. The developers decided to refactor a part
of the system involving module installers. This operation was aimed at reducing
the complexity of single installers, moving it to super classes. The result of this
refactoring, indeed, resulted in a profound improvement in code readability for
some of the installers which contained more articulated code. It is worth noting
that such changes were not explicitly intended to improve the readability: this was
a side effect of refactoring.

Bug fixing improved readability. A clear example of corrective change
that results in higher readability comes from Apache Deltaspike. The developers
fixed parts of the project and, in doing so, also added a comment in a small
class. This comment was aimed at clarifying the purpose of a line. This addition
increased both the number of comments and the consistency between comments
and identifiers. This modification also increased the readability of the whole class.

Adaptive changes. In Apache Incubator-Skywalking, we found 16 cases in
which code became unreadable. Looking at the code, we found that developers
first implemented empty versions of some methods (e.g., containing just return
0;). Such versions were clearly readable. After this first phase, they actually im-
plemented such methods and, in doing so, they incidentally introduced unread-
able code. Therefore, even if in this case we face a change in readability, this
happens just because the developers created the classes in two steps. We found
similar examples also in other projects, such as Apache Falcon. In other cases, we
found that code readability decreased because simple methods were removed. In
fact, we compute the readability of a class as the mean readability of the meth-
ods that compose it: if a class contains both readable and unreadable methods,
the code readability decreases when the number of readable methods decreases.
This happened, for example, in a commit10 from Apache Tomcat in which 13
very simple methods were removed from the class StackMapTableEntry, in a com-
mit11 from Apache Beam in which five empty methods were deleted from the class
FlinkStateInternalsTest and in a commit12 Apache Qpid-broker-j in which two
empty methods with documentation were removed from class Refresh. Similarly,

10 Apache Tomcat, commit 7d99e: https://git.io/fjLRw
11 Apache Beam, commit 7126f: https://git.io/fjLR9
12 Apache Qpid-broker-j, commit 2d90e: https://git.io/fjLRl

https://git.io/fjLRw
https://git.io/fjLR9
https://git.io/fjLRl
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most of the adaptive changes that resulted in a code readability improvement were
incidental. In six cases, unreadable code was removed or commented. This hap-
pened, for example, in the test HandlerComparatorTest in Apache Deltaspike13.

The results of our qualitative analysis agree with what was already observed
for other bad pracites (e.g., code smells) (Bavota et al., 2015; Chatzigeorgiou and
Manakos, 2014; Tufano et al., 2017; Silva et al., 2016; Maldonado et al., 2017;
Zampetti et al., 2018): changes in readability are mostly done unintentionally.

Why does code readability change? We looked more in depth into the causes of the
changes in code readability. We did this in terms of structural, visual, and textual
aspects, i.e., the ones used in the state of the art to predict code readability.

We found 34 cases in which code readability decreases because of structural
aspects. The most common cause is the introduction of long lines of code (17 cases):
for example, in a commit14 from Apache Incubator Skywalking, it is possible to
find, among the other possible problems, that the longest line of code has 116
characters; the Java guidelines15 suggest to make lines shorter than 100 or even
80 characters.

We also found 19 cases in which the problem was the introduction of high
levels of nesting (e.g., if-else statements or loops). For example, in a commit16

from Apache Incubator Skywalking, it is possible to find in the class SegmentH2DAO
the introduction of a try block in two nested if statements, nested in another
try block. Other common problems include higher number of parentheses and
complex arithmetic expressions (e.g., higher number of operators). In 27 cases,
code readability increased because of improvements of some structural aspects.
Conversely to what happened for readability decrease, in these cases nested blocks
mostly disappeared: in a commit17 from Apache Falcon, the class LateDataUtils
was refactored by extracting a long and complex instruction and putting it in a
method on its own. This helped increasing the whole readability of the class.

We found 26 cases in which readability decreased because of changes in visual
aspects. In 25 cases it is possible to see that indentation was not properly used.
This happened, for example, in a commit18 from Apache Incubator Skywalking:
the class ApplicationH2DAO does not have proper indentation; besides, a line starts
with a “;” which was, most likely, not intended to be there. Conversely, we found
8 cases in which readability improved as a consequence of changes in visual as-
pects. For example, in a commit19 from Reactive RxJava, in which in the class
OperatorMulticast is added code with a good indentation.

We found six cases in which readability decreased because of textual aspects,
most of which regarding problems in the names of the identifiers (e.g., wrong word
splitting or abbreviations). For example, this occurred in a commit20 from Apache
Tomcat: simple methods were removed and a remaining method, i.e., toString,

13 Apache Deltaspike, commit 36861: https://git.io/fhHpp
14 Apache Incubator Skywalking, commit ca90b: https://git.io/JeB5z
15 The ones by Oracle, http://www.oracle.com/technetwork/java/codeconventions-150003.
pdf, and the ones by Google, https://google.github.io/styleguide/javaguide.html
16 Apache Incubator Skywalking, commit d4333: https://git.io/JeB9a
17 Apache Falcon, commit 3769e: https://git.io/JeBbW
18 Apache Incubator Skywalking, commit bc38a: https://git.io/JeB50
19 Reactive RxJava, commit 0499c: https://git.io/JeREW
20 Apache Tomcat, commit 7d99e: https://git.io/fjLR2

https://git.io/fhHpp
https://git.io/JeB5z
http://www.oracle.com/technetwork/java/codeconventions-150003.pdf
http://www.oracle.com/technetwork/java/codeconventions-150003.pdf
https://google.github.io/styleguide/javaguide.html
https://git.io/JeB9a
https://git.io/JeBbW
https://git.io/JeB50
https://git.io/JeREW
https://git.io/fjLR2


How Does Code Readability Change During Software Evolution? 31

was unreadable also because of the presence of many occurrences of the iden-
tifier buf, short for “string buffer”. In 15 cases readability increased because of
improvements in textual aspects instead. This happened because the developers
added comments, improved bad identifiers or the textual cohesion. For exam-
ple, this is the case of a commit21 from Apache Hadoop in which the method
testDynamicLogLevel, that implemented many concepts (possibly, an eager test),
was divided in many methods (e.g., testLogLevelByHttp) with a higher textual
cohesion.

Summary of RQ4. We observed that (i) big code changes in which new
code is added are the most prone to reduce code readability, and (ii)
readability is increased/decreased mostly unintentionally.

6.2.3 Discussion

The main finding of our study is that code readability rarely changes. A first hint
towards this finding could be found in survey presented in Section 3, in which
most of the developers declared that, according to their experience, readability
changes only in less than 25% of the cases. Our empirical results confirm this,
showing that such a percentage is, actually, very low (always lower than 6.3%, for
the projects we studied). Moreover, our results show that it is more likely that
developers make unreadable files readable than the opposite. Another interesting
phenomenon we observed is that, even if it is generally a minority, unreadable code
tends to stay that way: on average, about 10% of the files of a project are created
unreadable and remain unreadable, with some outliers, such as ParSeq, for which
the percentage of unreadable files is very high (33.9%).

The risk of introducing unreadable code is higher when developers introduce
new code in a project: when developers create new files, there is a relatively high
probability that such files are unreadable. On the other hand, readable files rarely
become unreadable (the estimated probability is always lower than 4%). In our
qualitative analysis, we found that, when this happens, it is because of adaptive
changes. Something similar was already observed in the case of introduction of
code smells (Tufano et al., 2017) and dependencies on unstable APIs (Businge
et al., 2015): both code smells and dependencies on unstable APIs are mostly
present from the beginning and are rarely introduced during code evolution.

Based on our empirical results, we define several guidelines to help developers
keeping the quantity of unreadable code low. It is worth noting that some of them
agree with what is already known to be beneficial to avoid the introduction of
problems (e.g., bugs): we still think it is interesting to know that such guidelines
also help avoiding the introduction of unreadable code.

– Do not write code that should be improved in the future. One of
the clearest evidence we obtained from the results of our study is that read-
ability hardly changes during software evolution. This means that developers
should not underestimate readability when writing code since it is unlikely
that unreadable code later becomes readable. This can happen either because
developers do not think it is worth spending time making code more readable

21 Apache Hadoop, commit 34cc2: https://git.io/JeRZK

https://git.io/JeRZK
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(they may have more important tasks to complete) or because the readabil-
ity may become so low that it is very hard to recover such situations (like
in the previously analyzed ParSeq). Writing code that should be improved in
the future can be seen as introducing technical debt that should be resolved
later on (Cunningham, 1993): at the very least such technical debt should be
either explicitly admitted by developers (Potdar and Shihab, 2014), or flagged
by specialized tools (Zampetti et al., 2017).

– Review for code readability should be focused on new files and big
changes. Unreadable code is introduced mostly when new files/classes are cre-
ated; when a class is unreadable, it will most likely remain that way during the
entire project evolution. It would be a good practice to conduct code reviews
specifically aimed at checking the readability of the new classes suspected of
being unreadable. Our analyses also show that code changes bigger than usual
may result in a change in code readability: therefore, big changes should also
receive special attention. Code readability estimation tools could be used to
reduce the number of classes to review (e.g., limiting the review to potentially
unreadable classes). It is worth noting that such a guideline does not replace
other general guidelines on code review aimed at checking the presence of bugs,
for which even small changes may be detrimental.

– Prefer small incremental changes. It is well known that commits should
be small and consistent. We found that big (non-perfective) code changes are
dangerous for code readability as well as new file creation operations. As de-
scribed by Graves et al. (2000), the introduction of new files could also more
likely include bugs. Even if the probability of making a readable file unreadable
is low, it is still worth reviewing such modifications since unreadable files would
most likely remain unreadable. This guideline agrees with previous findings:
for example, Purushothaman and Perry (2005) showed that most of the small
code changes do not result in the introduction of defects in the software. When
big code changes are necessary, performing code reviews aimed at checking the
code readability could help reducing the risk of readability deterioration. Fur-
thermore, Fowler and Foemmel (2006) and Duvall et al. (2007) support commit
small in the CI guidelines. Zhao et al. (2017) have found that this guideline is
followed only to some extent, with large differences between projects in term
of adherence to this guideline. In a recent study by Ebert et al. (2019) on
the confusion in code reviews, long and complex changes have been repeatedly
reported as a reason for confusion.

– Refactor code when possible. Refactoring operations are done to improve
code maintainability. Our results show that it is beneficial also for code read-
ability. Surprisingly, we observed improvements in code readability even when
refactoring was not directly done with this aim. The following guideline reminds
the opposition between floss-refactoring and root canal refactoring (Murphy-
Hill and Black, 2008). Developers already prefer the floss-refactoring (i.e., fre-
quent refactoring steps interleaved with their regular activities). Consequently,
on projects with a big number of unreadable files there may be a need of
perform more refactoring operations. It is worth noting that this guideline is
not in contrast with the first one: readability should not be underestimated
during development, but perfective changes are still beneficial, above all if the
readability of some classes is borderline.
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– Carefully control the interface of the most used classes. The design of
the classes most used in a project may have a strong impact on the readabil-
ity of other classes. For example, if a popular class contains a method with a
unconventional name (like the previously mentioned _1 in ParSeq), the read-
ability of classes using such a method may be negatively impacted. For this
reason, the public methods exposed by classes, especially the most used ones,
should be carefully decided and kept up-to-date (e.g., if the purpose of the
method is slightly changed) during the evolution of a project.

We also delineate possible future research directions in the field of code readability
prediction:

– Define a readability-transition prediction model. Our results show that
readability prediction models aimed at predicting readability of single versions
achieve modest accuracy on predicting readability evolution transitions: the
state-of-the-art readability prediction tool that achieves the highest accuracy
on single file versions allows to achieve only a 64.5% precision on readable →
unreadable transitions. This is because the problem at hand is different and
some features (e.g., number of changed lines or author’s characteristics) are ob-
viously ignored by such models. A new readability-transition prediction model
would be useful for developers, since changes that make readable code unread-
able are generally rare and hard to catch manually; also, when a transition of
this type happens, it is very unlikely that an opposite transition is introduced
since, in general, files with low readability rarely become readable.

– Improving the readability-transition model. Our readability-transition
model is based on a binary classification of code readability. However, code
readability models do not only provide the binary classification, but also the
probability that such a classification is correct (i.e., the output score is in
the range [0, 1]). Future research could be aimed at finding the best way of
including such an information in the model to improve the accuracy through
which it describes the evolution of code readability. Besides, the use of non-
time-homogeneous Markov chains could be investigated to take into account
how the evolution of a project changes the transition probabilities in the model.

– Experiment the use of readability tools in CI. A tool that automatically
detects transitions that make code unreadable may be useful in practice, and it
could be integrated in Continuous Integration pipelines to automatically warn
developers when they make readability reducing changes in commits, before
other developers are involved in the code review process. However, before this
can happen, it would be necessary to understand to what extent developers
would benefit such tools: would such tools help them keeping the code readable?
Would they find warning useful or bothering? Empirical evidence is needed to
find the answer to such questions.

7 Threats to validity

In this section we analyze and discuss the threats that could affect the validity of
the results achieved. We describe construct validity, internal validity and external
validity.
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7.1 Construct Validity

The dataset is constructed by mining software repositories using Git from GitHub.
GitHub is widely used in software engineering research. However, there are many
possible perils in automatically extracting information from such sources (Bird
et al., 2009; Kalliamvakou et al., 2016). We made sure that we excluded person-
al/toy projects and repositories not used for software development (see the work
of Munaiah et al. (2017) for a more advanced treatment of this subject). We did
not explicitly check if the repositories we used were actively developed: we singu-
larly analyzed each project. Therefore we believe that the lack of recent activity
for some of them does not affect the validity of our results. We avoided possible
problems related to GitHub APIs (e.g., the fact that some APIs do not expose all
the data) by cloning and locally analyzing the Git repositories.

The model we used to compute the readability of the files in our dataset can
wrongly classify a readable file as unreadable and vice versa. We limited this
threat by using the model that in literature is reported as the one with the highest
accuracy (Scalabrino et al., 2018). Furthermore, Git allows developers to rewrite
the history: there is a risk that this could have affected our analysis. Another
possible threat is represented by renaming/moving operations: Git sometimes does
not correctly detect such operations and it interprets them as combinations of file
removal and addition instead, in such cases we may have wrongly used the non-
existing instead of other-name as initial state.

We operationalized the readability at class-level as the arithmetic mean of the
readability computed at method-level. It may be argued that other aggregation
techniques would have provided more reliable estimation of class-level readabil-
ity (Vasilescu et al., 2011b): arithmetic mean does not work well when a class is
composed by many readable methods (e.g., getters and setters) and a single un-
readable method (Vasilescu et al., 2011a). We list below other measures of central
tendency and discuss their advantages and disadvantages.

– Minimum: this would have been useful in the scenario described before (many
small readable methods and a single unreadable method). However, the prob-
ability of making a mistake would have been much higher in the average case:
the probability of correctly classifying C as readable or unreadable would have
been equal to Pcorrect(C) = Πn

i=1Pcorrect(Ci). Assuming that the probability of
correctly classifying a method is constant (i.e., ∼84%, according to the study
of Scalabrino et al. (2018)), this value can be approximated to 0.84n. In other
words, in large classes, using the minimum could have negatively affected the
overall accuracy of the classifier, since it would have been sufficient to wrongly
classify a single method as unreadable to make a mistake for the whole class.
For example, for a class with 10 methods the probability of correctly classifying
C would have dropped to about 17.5%.

– Median: this aggregation is preferred over mean for skewed distributions, since
it is more robust and it allows to ignore extreme values (possible outliers). In
this context, however, this was not the best choice since extreme values are
the most relevant ones, i.e., the ones on which the classifier is more confident.
Moreover, this kind of aggregation would have not solved the problem of the
arithmetic mean (many readable methods and a single unreadable method).
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– Weighted mean: while this aggregation could have been suitable for handling
cases in which there are many getters and setters and a single unreadable
long method, it is worth noting that unreadable methods are not necessarily
longer than readable ones. Instead, there could be very short methods that
make the class unreadable. Such methods would have had a possibly smaller
weight. Moreover, such an aggregation would have forced us to assume that
long methods matter to developers more than short methods: we decided not
make such a strong assumption and, therefore, not to use this aggregation.

Finally, to define our readability evolution model, we assumed that readability
is not a cause for deletion of source files and, therefore, we did not track such
operations. This assumption does not affect the results of our study; however,
future work specifically aimed at finding the causes of class deletions may be done
to investigate more in-depth if low readability has a role in this.

7.2 Internal Validity

Because of the errors made by the readability classifier we used, it is possible that
the frequency of some transitions is larger/smaller than it is in the reality. To limit
the impact of the threat that small changes around 0.5 result in a new transition
in our dataset, we excluded the borderline values (between ∼0.416 and ∼0.600,
based on the results of RQ1). However, this caused the exclusion of about 20%
of the transitions we recorded: there is a risk that some of such transitions were
not false positives and, therefore, that we missed meaningful transitions in our
subsequent analyses.

To answer RQ2, the raters needed to state their agreement with the evaluations
automatically performed by the tool. The raters might have inclined to agree with
the tool. To reduce the impact of such a threat, we made sure that at least two
authors independently rated each occurrence. Besides, in the results of RQ2, we
showed also that the tool is not as accurate in classifying transitions as when
it is used on single file versions. We limited this threat using bootstrapping for
estimating the probabilities and we reported the 90% confidence intervals for each
probability.

The model we defined describes the probability that a file modification results
in a change of code readability. Since we perform our analysis at commit-level,
there is the risk that small commits may gradually erode code readability until
the state of a file changes with a single commit. In other words, the probabilities
we report could be biased by the fact that most of the changes are small. Other
granularity levels (e.g., release-level) would have avoided this threat, but they
would have not allowed us to understand what happens more in details. To limit
this threat, we also report the number of files that change readability at least once
(i.e., regardless of the number of commits).

We used a time-homogeneous Markov chain to describe the readability evolu-
tion process. In other words, we assumed that the probabilities of state transitions
do not change in time. Such assumption could not always hold: for example, the
probability of introducing unreadable files may be higher when many new develop-
ers start contributing to the project (as we observed in the results of RQ3). Future
studies should consider also the usage of generic discrete-time Markov chains.
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7.3 External Validity

The conclusions of our study may be limited to the 25 projects we considered in
our experiment. We randomly selected such systems considering only the ones with
a reasonably big history and big enough that readability monitoring may matter
for their developers. Besides, we considered only open source Java projects: the
results may not be necessarily generalize to industrial software or software written
in other programming languages.

Furthermore, in the selection of open source Java projects, we selected well-
known projects that are still actively developed and this could be have biased our
results (survivor bias). Abandoned or failed projects could have had very different
characteristics: for example, it would have been possible to observe a decline in
terms of code readability at the end of the history of a project.

8 Conclusion

Readability is one of the most desirable characteristics of source code: if code is
hard to read, it is likely that it will cost a developer more effort to understand it
during maintenance.

In this paper, we introduced a descriptive model for the evolution of code
readability at file level. We conducted a large empirical study to understand how
and why code readability changes during software evolution. We considered the
history of 25 projects, for a total of ∼83K commits. Our results show that code
readability rarely changes: therefore, when a file is created unreadable it most likely
remains unreadable. We also found that readability changes mostly happen because
of adaptive changes that modify much code in the class. However, unreadable code
is a minority of the code in most of the projects we studied. Finally, we observed
that current readability models are not very well suited for classifying readability
changes.

Our results suggest that well known best practices, such as making small
commits and performing refactoring operations when needed, help reducing the
amount of unreadable code. In addition, carefully reviewing code when new fea-
tures are introduced can help reducing the quantity of unreadable code.

Our results call for the following future research directions. First, new read-
ability prediction models specifically designed to classify changes instead of single
snapshots would be necessary. Also, using a discrete-time Markov chain (non-time-
homogeneous) could help defining a more fine-grained and accurate readability
evolution model.
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