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ABSTRACT
The role of software testing in the software development
process is widely recognized as a key activity for successful
projects. This is the reason why in the last decade several
automatic unit test generation tools have been proposed, fo-
cusing particularly on high code coverage. Despite the e↵ort
spent by the research community, there is still a lack of em-
pirical investigation aimed at analyzing the characteristics
of the produced test code. Indeed, while some studies in-
spected the e↵ectiveness and the usability of these tools in
practice, it is still unknown whether test code is maintain-
able. In this paper, we conducted a large scale empirical
study in order to analyze the di↵usion of bad design solu-
tions, namely test smells, in automatically generated unit
test classes. Results of the study show the high di↵usion
of test smells as well as the frequent co-occurrence of di↵er-
ent types of design problems. Finally we found that all test
smells have strong positive correlation with structural char-
acteristics of the systems such as size or number of classes.
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General Terms
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1. INTRODUCTION
Software testing has a fundamental role in any successful
software development process. Despite this, developers do
not test as they should and tend to overstimate their testing
e↵ort [8]. For this reason, in the last decade the automatic
generation of test data has received substantial attention
from researchers. Many techniques have been proposed and
nowadays there are several tools able to produce test suites

with high code coverage [14, 25, 35, 40, 44]. Besides tech-
niques able to maximize the code coverage as main goal,
also multi-objective approaches have been proposed in order
to achieve additional desirable objectives, such as the min-
imization of (i) the oracle cost [12], (ii) dynamic memory
consumption [22], (iii) number of test cases [31], (iv) execu-
tion time [38], as well as the maximization of the number of
collateral targets that are accidentally covered [18].

Although the e↵ort devoted by the research community in
order to define techniques able to automatically generate
test cases, there is still a lack of empirical investigations
about the characteristics of test code produced by such tools.
Indeed, while recent studies have been conducted to evalu-
ate, on the one hand, the e↵ectiveness of test cases [4, 36,
46] and, on the other hand, the usability of these tools in
practice [42], it is still unclear whether the test code auto-
matically generated is maintainable. In this paper, we start
to face the problem by conducting a large scale empirical
study on the SF110 dataset, a set of 110 open source soft-
ware projects [15], in order to investigate to what extent
JUnit test classes automatically generated by a popular test
case generation tool, EvoSuite [14], are a↵ected by bad de-
sign solutions, namely test smells. Specifically, Van Deursen
et al. defined test smells as symptoms of the presence of
poor design or implementation choices in test code [50], fol-
lowing the concept of code smells occurring in production
code [13].

In the past, Bavota et al. [6] investigated the impact of
test smells in the context of test cases manually written by
developers, demonstrating that test smells (i) are largely dif-
fused in open source projects, and (ii) have a huge impact on
test code comprehensibility and maintainability. Our empir-
ical exploration has the main goal to replicate the study on
di↵usion of test smells proposed by Bavota et al. in the con-
text of JUnit classes automatically generated by EvoSuite,
by considering 8 test smells defined by Van Deursen et al.
[50]. In details, we aim at answering the following research
questions:

RQ1: To what extent test smells are spread in
automatically generated test classes?

RQ2: Which test smells occur more frequently in
automatically generated test classes?

RQ3: Which test smells co-occur together?



RQ4: Is there a relationships between the pres-
ence of test smells and the project characteris-
tics?

The results of our empirical study di↵er from the ones re-
ported in [6] for manually written test classes. Indeed, while
the di↵usion of test smells is similar (83% of the considered
JUnit classes are a↵ected by at least one test smell), we
found that 3 test smell types, i.e., Assertion Roulette, Test
Code Duplication and Eager Test, are particularly di↵used
in automatically generated test classes. Moreover, some test
smells frequently co-occur together. Finally, almost all the
test smells have strong positive correlations with structural
characteristics of a system, such as size and number of classes
in the project. Furthermore, we qualitatively analyzed sev-
eral instances in order to understand the reasons behind the
achieved results, but also to discover peculiar characteris-
tics of EvoSuite that make possible the introduction of test
smells during the generation process.

Structure of the paper. The paper is organized as fol-
lows. Section 2 overviews the background on test smells as
well as the related literature, while Section 3 describes the
design of our empirical study. In Section 4 we report and
discuss the obtained results. Section 5 discusses the threats
that could a↵ect the validity of the results of our study, while
Section 6 concludes the paper.

2. BACKGROUND AND RELATED WORK
As well as production code, also test code should be de-
signed following good programming practices [45]. During
the last decade, the research community spent a lot of e↵ort
on the definition of methods and tools for detecting design
flaws in production code [21, 23, 26, 28, 29, 30, 34, 48],
as well as empirical studies aimed at assessing their impact
on maintainability [1, 3, 9, 20, 24, 33, 37, 41, 47, 52, 53].
However, design problems a↵ecting test code have been only
partially explored. The importance to have well designed
test code has been originally highlighted by Beck [7], while
Van Deursen et al. [50] defined a catalogue of 11 test smells,
i.e., a set of a poor design solutions to write tests, together
with refactoring operations able to remove them. This cata-
logue takes into account di↵erent types of bad design choises
made by developers during the implementation of test fix-
tures (e.g., setUp() method too generic where test methods
only access a part of it), or of single test cases (e.g., test
methods checking several objects of the class to be tested).
When considering automatically generated test classes, not
all the test smells originally defined can be studied. Indeed,
almost all the automatic tools for generating test classes
do not produce test fixtures [14, 32, 35, 39, 44]. For this
reason, our study focus its attention on 8 test smells, i.e.,
the ones that potentially can a↵ect test code automatically
generated. In the following, we provide an overview of such
smells, as well as describing the related literature in the field.

Mystery Guest (MG): This smell arises when a test uses
external resources (e.g., file containing test data), and thus
it is not self contained [50]. Tests containing such smell
are di�cult to comprehend and maintain, due to the lack
of information to understand them. To remove a Mystery
Guest a Setup External Resource operation is needed [50].

Resource Optimism (RO): Tests a↵ected by such smell

make assumptions about the state or the existence of ex-
ternal resources, providing a non-deterministic result that
depends on the state of the resources [50]. Also in this case,
to remove the smell a Setup External Resource refactoring
[50] is needed.

Eager Test (ET): A test is a↵ected by Eager Test when it
checks more than one method of the class to be tested [50],
making the comprehension of the actual test target di�cult.
A possible solution is represented by the application of a
Extract Method refactoring, able to split the test method in
order to specialize its responsabilities [13].

Assertion Roulette (AR): As defined by Van Deursen
et al., this smell comes from having a number of assertions
in a test method that have no explanation [50]. Thus, if an
assertion fails, the identification of the assert that failed can
be di�cult. Besides removing the unneeded assertions, to
remove this smell and make the test more clear an operation
of Add Assertion Explanation can be applied [50].

Indirect Testing (IT): A test that checks the correspond-
ing production class using methods of another class [50].
Such indirection, in addition to being a design error, can cre-
ate problems in the comprehension of the sequence of calls
performed by the test case during its activities. Van Deursen
et al. [50] suggest to remove this smell by applying an Ex-
tract Method refactoring, followed by a Move Method one,
in order to re-organize such indirection moving the methods
to the appropriate test class.

For Testers Only (FTO): This smell arises when a pro-
duction class contains methods only used by test methods
[50]. This kind of production classes should be removed,
since it does not provide functionalities used by other classes
in the system. From the testing side, this smell involves an
extra e↵ort needed in order to comprehend and modify as-
sertions [50].

Sensitive Equality (SE): When an assertion contains an
equality checks through the use of the toStringmethod, the
test is a↵ected by a Sensitive Equality smell. In this case,
the failure of a test case can depend on the details of the
string used in the comparison, e.g., commas, quotes, spaces
etc. [50]. A simple solution for removing this smell is the
application of a Introduce Equality Method refactoring, in
which the use of the toString is replaced by a real equality
check.

Test Code Duplication (TCD): Code duplication is a
potentially serious problem that a↵ects the maintainabil-
ity and the comprehensibility of a software system. In test
classes, the most common case in which this smell appears is
the duplication of code in the same test class. For removing
such smell, an Extract Method refactoring can be applied in
order to put the duplicate code in one single method, and
use such method in all the remaining tests.



Listing 1: Example of test method automatically
generated using the EvoSuite tool.

1 pub l i c void t e s t 12 ( ) throws Throwable {
2 JSTerm jSTerm0 = new JSTerm ( ) ;
3 jSTerm0 . makeVariable ( ) ;
4 jSTerm0 . add ( ( Object ) ””) ;
5 jSTerm0 . matches ( jSTerm0 ) ;
6 a s s e r tEqua l s ( f a l s e , jSTerm0 . isGround ( ) ) ;
7 a s s e r tEqua l s ( true , jSTerm0 . i sVa r i a b l e ( ) ) ;
8 }

Besides the test smells defined by Van Deursen et al. [50],
Meszaros defined other smells a↵ecting test code [27]. Start-
ing from these catalogues, Greiler et al. [16, 17] showed
that test smells related to fixture set-up frequently occur in
industrial projects and, therefore, presented a static analy-
sis tool, namely TestHound, to identify fixture related test
smells. Van Rompaey et al. [51] proposed a heuristic struc-
tural metric-based approach to identify General Fixture and
Eager Test instances. However, the results of an empirical
study demonstrated that structural metrics have low accu-
racy in the detection of both test smells. As for the empirical
study, Bavota et al. [6] conducted an empirical investigation
in order to study (i) the di↵usion of test smells in 18 software
projects, and (ii) their e↵ects on software maintenance. The
results of the study demonstrated that 82% of JUnit classes
in their dataset is a↵ected by at least one test smell, but
also that the presence of design flaws has a strong negative
impact on maintainability.

Our paper. In this paper we complement, on a larger set
of software projects (110 software projects against 18), the
analysis on the di↵usion of test smells conducted by Bavota
et al. [6], by considering the di↵usion of test smells that
can a↵ect JUnit classes automatically generated using search
based algorithms, as well as the relationships among them
and among structural properties of source code. Specifically,
we believe that test smells can have a similar impact on
the maintenance activities of automatically generated test
cases, as well as they can hinder their comprehensibility.
Our observations come from the analysis of the test code
generated using di↵erent automatic tools. All of them can
generate poorly readable test code [2, 11, 43]. For exam-
ple, they provide stub assertions that testers need to mod-
ify in order to correctly check that the software behaves
as intended [5]. At the same time, as shown in Listing 1,
automatic tools provide test code having stub names (e.g.,
test12), and identifiers (i.e., usually following the <class-

name><increamental-number> convention). This makes dif-
ficult to understand the actual target methods of the pro-
duction classes, as well as the modifications needed for fixing
incorrect behaviour of the source code. In this context, the
presence of test smells can further increase the design prob-
lems of test code produced. As an example, the test code
shown in Listing 1 actually checks 2 methods of the pro-
duction class, i.e., it contains an Eager Test smell. In this
case, it is almost impossible to understand which method of
the production class is the main target, and this potentially
decreases the ability of developers to find faults [36].

Table 1: Characteristics of the SF110 dataset [15]
Characteristic Value
Number of Projects 110
Number of Testable Classes 23,886
Lines of Code 6,628,619
Number of Java Files 27,997

3. EMPIRICAL STUDY DEFINITION AND
DESIGN

This section reports the planning of the study we conducted
in order to analyze the distribution of the test smells de-
fined by Van Deursen et al. [50] in the context of auto-
matically generated test cases. We choose to analyze the
behavior of EvoSuite since (i) it is one of the most popular
tools for generating test cases, and (ii) a large dataset of
JUnit classes generated using this tool is publicly available
[15]. The goals of the study are (i) determining to what
extent unit tests generated by automatic tools present de-
sign smells; (ii) identifying the most frequent test smells;
(iii) investigating which test smells co-occur; (iv) investigat-
ing the correlation between system characteristics (i.e., test
class LOC, production code LOC, number of classes, num-
ber of JUnit classes) and presence of test smells. Specifically,
in the context of our study we formulated the following re-
search questions:

RQ1: To what extent test smells are spread in
automatically generated test classes? This re-
search question aims at quantifying the presence
of test smells in the test classes automatically
generated using the EvoSuite tool.

RQ2: Which test smells occur more frequently in
automatically generated test classes? With this
research question, we are interested in under-
standing which test smells are more frequently
introduced during the automatic generation pro-
cess.

RQ3: Which test smells co-occur together? In
this analysis we analyze which test smells co-
occur in the test classes automatically generated
using the EvoSuite tool.

RQ4: Is there a relationships between the pres-
ence of test smells and the project characteris-
tics? This research question aims at investigat-
ing the relationships between the test smell pres-
ence and the characteristics of a software system.

To answer our research questions we firstly mined the JU-
nit test classes automatically generated by EvoSuite on the
SF110 dataset, a set of 110 open source software projects
publicly available [15]. Table 1 reports the statistics of the
dataset used in this paper, in terms of (i) number of projects,
(ii) number of testable classes, (iii) lines of code, and (iv)
number of Java files/classes belonging to the dataset. The
choise of the systems to consider in the experiment is not
random but guided by the will to have a large number of
systems of di↵erent nature and di↵erent domains, that al-
low us to generalize the results of our study. Indeed, the
dataset contains a statistically representative sample of the
projects hosted on SourceForge1. Because of the number of
1http://sourceforge.net



Table 2: The Rules used by the Test Smell Detector

to Detect Candidate Test Smells.
Name Abbr. Description
Mystery Guest MG JUnit classes that use an external resource (e.g., a file or

database).
Resource Optimism RO JUnit classes that use an external resource that is not present

on the disk.
Eager Test EG JUnit classes having at least one method that uses more than

one method of the tested class.
Assertion Roulette AR JUnit classes containing at least one method having more than

one assertion statement, and having at least one assertion state-
ment without explanation.

Indirect Testing IT JUnit classes invoking, besides methods of the tested class,
methods of other classes in the production code.

For Testers Only FTO Classes in the production code having structural relationship
(e.g., method invocations, inheritance) with only JUnit classes.

Sensitive Equality SE JUnit classes having at least one assert statement invoking a
toString method.

Test Code Duplication TCD JUnit classes identified as containing clones by the Deckard clone
detection tool [19].

systems analyzed, a manual detection of the 8 test smells is
prohibitively expensive. This is the reason why we used a
detection tool, named Test Smell Detector, implemented
by Bavota et al. in [6]. Unlike other existing detection tools
(e.g., [16] and [51]), the selected tool is able to identify all
the test smells considered in this study by applying a heuris-
tic metric-based technique that overstimate the presence of
test design flaws in order to detect all the instances (100% of
recall), having an average precision of 88%. Table 2 reports
the set of rules used by the tool in order to detect instances
of test smells.

To answer RQ1 we verified what is the distribution of the
considered test smells in the analyzed software projects.
Once obtained the data of their di↵usion, to answer RQ2 we
verified which are the test smells that occur more frequently
in the systems of our study. As for RQ3, we investigated
how often the presence of a test smell in a JUnit class im-
plies the presence of another test smell. Specifically, for each
test smell ti we measured the percentage of times its pres-
ence in a JUnit class co-occurs with another test smell tj
(i 6= j). Formally, for each pair of test smells ti and tj we
compute the percentage of co-occurrences of ti and tj using
the formula shown below:

co-occurrencesti,tj =
|ti ^ tj |
|ti|

(1)

where where |ti ^ tj | | is the number of times ti co-occurs
with tj , and |ti| is the number of occurrences of ti. Fi-
nally, we verified if there exists a relationship between the
presence of smells and some structural characteristics, i.e.,
production code LOC, number of Classes, number of JU-
nit Classes, and LOC of JUnit Classes, of a system. In
particular, we computed, for each system in out study, the
Pearson product-Moment Correlation Coe�cient (PMCC)
[10] between the values of each system’s characteristic and
the percentage of occurrences of each test smell in this sys-
tem (as done in [6] for manually written tests). PMCC is a
measure of correlation between two variables X and Y de-
fined in [-1; 1], where 1 represents a perfect positive linear
relationship, -1 represents a perfect negative linear relation-
ship, and values in between indicate the degree of linear
dependence between X and Y. Cohen et al. [10] provided
a set of guidelines for the interpretation of the correlation
coe�cient. It is assumed that there is no correlation when
0  ⇢ < 0.1, small correlation when 0.1  ⇢ < 0.3, medium
correlation when 0.3  ⇢ < 0.5, and strong correlation when
0.5  ⇢  1. Similar intervals also work in cases of negative

correlations.

4. ANALYSIS OF THE RESULTS
Table 3 reports the results about the di↵usion of the 8 con-
sidered test smells, achieved by running the Test Smell De-

tector over the SF110 dataset. It is worth noting that the
results for the For Testers Only test smell are not reported in
the table, since this type of smell appears in the production
code and not in the JUnit classes. However, we found 5,632
instances of this smell in our dataset (34% of the analyzed
JUnit classes), i.e., 5,632 production classes are used only by
some test methods. As for the other test smells considered in
our study, the first thing that leaps to the eye is the percent-
age of JUnit test classes actually containing at least one test
smell. Indeed, we found that 13,791 out of the total 16,603
JUnit classes (i.e., 83% of them) are a↵ected by design prob-
lems. This result highlights on the one hand the high dif-
fusion of test smells, and on the other hand the inability of
the automatic test case generation tools to deal with design
problems during the generation of test classes. Particularly
interesting is the case of the ifx-framework project, where
all the 3,899 JUnit classes are a↵ected by at least one test
smell.

Listing 2: Test Method automatically generated by
EvoSuite containing a Sensitive Equality test smell.

1 pub l i c void t e s t 8 ( ) throws Throwable {
2 BankAcctTaxInqRq Type bankAcctTaxInqRq Type0 =

new BankAcctTaxInqRq Type ( ) ;
3 DeliveryMethod del iveryMethod0 = new

DeliveryMethod ( ) ;
4 bankAcctTaxInqRq Type0 . setDel iveryMethod (

del iveryMethod0 ) ;
5 a s s e r tEqua l s ( ”org . s ou r c e f o r g e . i f x . framework .

element . DeliveryMethod = {\n St r ing = NULL\n
} ” , del iveryMethod0 . t oS t r i ng ( ) ) ;

6 }

As an example, Listing 2 shows the test method test8 of
the BankAcctTaxInqRq_TypeEvoSuiteTest contained in the
package org.sourceforge.ifx.framework.complextype.

This method is a↵ected by a Sensitive Equality test smell,
since the assert statement contains an equality check through
the use of the toString method. More in general, in this
project we found a large number of instances of half of the
types of smells we considered. Indeed, over the total 3,899
test classes, we found 1,190 instances of Assertion Roulette,
168 instances of Eager Test, 1,180 Sensitive Equality, and
1,178 Test Code Duplication. On the other hand, the project
does not contain any instance of Mystery Guest, Resource
Optimism and Indirect Testing.

Looking at how frequently specific design flaws are present
in the software projects, we can observe that three test
smells, i.e. Assertion Roulette, Eager Test, and Test Code
Duplication, are particularly di↵used. Specifically, in our
dataset the Assertion Roulette smell occurs in 54% of the
JUnit classes, Eager Test instances are present in 29% of
them, while the Test Code Duplication occurs in 33% of
the classes. The high di↵usion of Assertion Roulette con-
firms previous findings [6], while the number of instances



Table 3: Distribution of Test Smells in SF110 Corpus of Classes
Project # JUnit Tests # JUnit Tests With Test Smells Assertion Roulette Eager Test Mystery Guest Sensitive Equality Resource Optimism Indirect Testing Test Code Duplication
jgaap 19 13 (68%) 10 (77%) 3 (23%) 1 (8%) 6 (46%) 0 (0%) 0 (0%) 0 (0%)
netweaver 177 149 (84%) 122 (82%) 81 (54%) 16 (11%) 14 (9%) 5 (3%) 0 (0%) 92 (62%)
squirrel-sql 636 419 (66%) 369 (88%) 196 (47%) 50 (12%) 63 (15%) 13 (3%) 4 (1%) 126 (30%)
sweethome3d 152 96 (63%) 81 (84%) 58 (60%) 15 (16%) 8 (8%) 7 (7%) 4 (4%) 38 (40%)
vuze 729 605 (83%) 548 (91%) 345 (57%) 81 (13%) 110 (18%) 18 (3%) 15 (2%) 174 (29%)
freemind 205 129 (63%) 113 (88%) 55 (43%) 18 (14%) 28 (22%) 5 (4%) 5 (4%) 28 (22%)
checkstyle 18 12 (67%) 10 (83%) 4 (33%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (8%)
weka 352 329 (93%) 304 (92%) 195 (59%) 45 (14%) 98 (30%) 12 (4%) 54 (16%) 177 (54%)
liferay 4207 3510 (83%) 2469 (70%) 1506 (43%) 122 (3%) 237 (7%) 44 (1%) 2 (0%) 2084 (59%)
pdfsam 315 214 (68%) 184 (86%) 103 (48%) 46 (21%) 16 (7%) 37 (17%) 1 (0%) 84 (39%)
water-simulator 48 37 (77%) 32 (86%) 11 (30%) 0 (0%) 2 (5%) 0 (0%) 0 (0%) 2 (5%)
firebird 185 164 (89%) 145 (88%) 83 (51%) 28 (17%) 14 (9%) 0 (0%) 1 (1%) 80 (49%)
imsmart 15 14 (93%) 7 (50%) 3 (21%) 7 (50%) 0 (0%) 1 (7%) 1 (7%) 7 (50%)
dsachat 31 24 (77%) 16 (67%) 11 (46%) 2 (8%) 8 (33%) 0 (0%) 2 (8%) 2 (8%)
jdbacl 108 94 (87%) 86 (91%) 47 (50%) 17 (18%) 20 (21%) 3 (3%) 0 (0%) 29 (31%)
omjstate 8 8 (100%) 7 (88%) 4 (50%) 0 (0%) 1 (13%) 0 (0%) 0 (0%) 1 (13%)
beanbin 73 55 (75%) 42 (76%) 19 (35%) 7 (13%) 3 (5%) 2 (4%) 0 (0%) 8 (15%)
templatedetails 1 1 (100%) 1 (100%) 1 (100%) 1 (100%) 1 (100%) 0 (0%) 0 (0%) 1 (100%)
inspirento 26 23 (88%) 21 (91%) 13 (57%) 1 (4%) 5 (22%) 0 (0%) 1 (4%) 2 (9%)
jsecurity 138 124 (90%) 101 (81%) 54 (44%) 17 (14%) 15 (12%) 0 (0%) 0 (0%) 33 (27%)
jmca 33 11 (33%) 9 (82%) 4 (36%) 1 (9%) 2 (18%) 0 (0%) 0 (0%) 2 (18%)
tullibee 17 17 (100%) 15 (88%) 5 (29%) 1 (6%) 0 (0%) 0 (0%) 0 (0%) 3 (18%)
nekomud 7 6 (86%) 3 (50%) 2 (33%) 1 (17%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
geo-google 52 49 (94%) 49 (100%) 41 (84%) 1 (2%) 1 (2%) 1 (2%) 0 (0%) 35 (71%)
byuic 12 9 (75%) 9 (100%) 6 (67%) 0 (0%) 1 (11%) 0 (0%) 0 (0%) 4 (44%)
jwbf 48 30 (63%) 28 (93%) 23 (77%) 6 (20%) 6 (20%) 4 (13%) 0 (0%) 5 (17%)
saxpath 8 8 (100%) 7 (88%) 6 (75%) 0 (0%) 1 (13%) 0 (0%) 0 (0%) 5 (63%)
jni-inchi 22 11 (50%) 11 (100%) 7 (64%) 1 (9%) 1 (9%) 0 (0%) 0 (0%) 0 (0%)
jipa 2 2 (100%) 2 (100%) 1 (50%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
gangup 92 43 (47%) 42 (98%) 27 (63%) 0 (0%) 19 (44%) 0 (0%) 0 (0%) 6 (14%)
greencow 1 1 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
apbsmem 44 42 (95%) 40 (95%) 11 (26%) 1 (2%) 2 (5%) 1 (2%) 0 (0%) 21 (50%)
a4j 22 22 (100%) 22 (100%) 17 (77%) 5 (23%) 12 (55%) 0 (0%) 0 (0%) 14 (64%)
bpmail 21 17 (81%) 17 (100%) 10 (59%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
xisemele 38 31 (82%) 11 (35%) 9 (29%) 2 (6%) 0 (0%) 2 (6%) 0 (0%) 4 (13%)
httpanalyzer 18 11 (61%) 11 (100%) 1 (9%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
javaviewcontrol 14 14 (100%) 12 (86%) 5 (36%) 1 (7%) 7 (50%) 1 (7%) 0 (0%) 2 (14%)
sbmlreader2 6 5 (83%) 5 (100%) 0 (0%) 1 (20%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
corina 131 90 (69%) 71 (79%) 36 (40%) 9 (10%) 23 (26%) 4 (4%) 1 (1%) 16 (18%)
schemaspy 21 13 (62%) 6 (46%) 6 (46%) 1 (8%) 0 (0%) 0 (0%) 0 (0%) 1 (8%)
petsoar 9 6 (67%) 5 (83%) 2 (33%) 1 (17%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
javabullboard 40 39 (98%) 37 (95%) 29 (74%) 17 (44%) 6 (15%) 0 (0%) 1 (3%) 8 (21%)
di� 10 8 (80%) 8 (100%) 5 (63%) 0 (0%) 2 (25%) 0 (0%) 0 (0%) 1 (13%)
gaj 9 8 (89%) 7 (88%) 3 (38%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
glengineer 15 15 (100%) 12 (80%) 7 (47%) 0 (0%) 10 (67%) 0 (0%) 0 (0%) 6 (40%)
follow 20 15 (75%) 14 (93%) 7 (47%) 1 (7%) 2 (13%) 1 (7%) 0 (0%) 1 (7%)
asphodel 8 8 (100%) 3 (38%) 5 (63%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
lilith 165 107 (65%) 95 (89%) 39 (36%) 10 (9%) 27 (25%) 10 (9%) 0 (0%) 46 (43%)
summa 163 112 (69%) 90 (80%) 55 (49%) 9 (8%) 27 (24%) 5 (4%) 0 (0%) 28 (25%)
lotus 54 39 (72%) 16 (41%) 3 (8%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (3%)
nutzenportfolio 47 45 (96%) 22 (49%) 21 (47%) 0 (0%) 8 (18%) 0 (0%) 0 (0%) 40 (89%)
dvd-homevideo 9 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
resources4j 5 3 (60%) 3 (100%) 3 (100%) 1 (33%) 0 (0%) 1 (33%) 0 (0%) 0 (0%)
diebierse 12 6 (50%) 5 (83%) 2 (33%) 0 (0%) 2 (33%) 0 (0%) 0 (0%) 1 (17%)
rif 14 11 (79%) 6 (55%) 6 (55%) 2 (18%) 0 (0%) 0 (0%) 0 (0%) 2 (18%)
bi↵ 5 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
jiprof 102 85 (83%) 77 (91%) 34 (40%) 9 (11%) 15 (18%) 0 (0%) 2 (2%) 38 (45%)
lagoon 66 39 (59%) 28 (72%) 9 (23%) 5 (13%) 2 (5%) 4 (10%) 1 (3%) 10 (26%)
shp2kml 4 3 (75%) 3 (100%) 1 (33%) 1 (33%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
db-everywhere 75 69 (92%) 54 (78%) 27 (39%) 6 (9%) 16 (23%) 0 (0%) 0 (0%) 41 (59%)
lavalamp 24 15 (63%) 11 (73%) 12 (80%) 1 (7%) 9 (60%) 0 (0%) 0 (0%) 2 (13%)
jhandballmoves 50 46 (92%) 37 (80%) 8 (17%) 37 (80%) 9 (20%) 3 (7%) 0 (0%) 15 (33%)
hft-bomberman 124 68 (55%) 31 (46%) 17 (25%) 3 (4%) 5 (7%) 0 (0%) 0 (0%) 29 (43%)
fps370 12 6 (50%) 3 (50%) 1 (17%) 1 (17%) 1 (17%) 0 (0%) 0 (0%) 2 (33%)
mygrid 34 32 (94%) 32 (100%) 24 (75%) 3 (9%) 2 (6%) 0 (0%) 0 (0%) 29 (91%)
templateit 15 14 (93%) 13 (93%) 8 (57%) 0 (0%) 4 (29%) 0 (0%) 0 (0%) 1 (7%)
sugar 25 22 (88%) 20 (91%) 14 (64%) 5 (23%) 7 (32%) 4 (18%) 0 (0%) 10 (45%)
noen 377 272 (72%) 188 (69%) 105 (39%) 7 (3%) 27 (10%) 0 (0%) 0 (0%) 130 (48%)
dom4j 72 69 (96%) 67 (97%) 54 (78%) 6 (9%) 9 (13%) 5 (7%) 0 (0%) 10 (14%)
objectexplorer 70 53 (76%) 45 (85%) 28 (53%) 1 (2%) 8 (15%) 0 (0%) 0 (0%) 8 (15%)
jtailgui 38 26 (68%) 19 (73%) 7 (27%) 8 (31%) 4 (15%) 5 (19%) 0 (0%) 4 (15%)
gsftp 14 7 (50%) 7 (100%) 5 (71%) 2 (29%) 1 (14%) 1 (14%) 0 (0%) 2 (29%)
openjms 508 373 (73%) 299 (80%) 201 (54%) 15 (4%) 43 (12%) 1 (0%) 0 (0%) 170 (46%)
gae-app-manager 8 4 (50%) 4 (100%) 2 (50%) 1 (25%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
biblestudy 20 17 (85%) 17 (100%) 15 (88%) 6 (35%) 6 (35%) 0 (0%) 0 (0%) 3 (18%)
lhamacaw 97 64 (66%) 51 (80%) 34 (53%) 8 (13%) 17 (27%) 0 (0%) 1 (2%) 33 (52%)
jnfe 51 18 (35%) 6 (33%) 5 (28%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 9 (50%)
echodep 79 61 (77%) 26 (43%) 11 (18%) 7 (11%) 11 (18%) 6 (10%) 0 (0%) 21 (34%)
ext4j 24 18 (75%) 14 (78%) 4 (22%) 1 (6%) 0 (0%) 0 (0%) 0 (0%) 4 (22%)
battlecry 11 5 (45%) 4 (80%) 2 (40%) 1 (20%) 1 (20%) 0 (0%) 0 (0%) 2 (40%)
fim1 50 35 (70%) 33 (94%) 16 (46%) 5 (14%) 13 (37%) 2 (6%) 0 (0%) 10 (29%)
fixsuite 22 18 (82%) 15 (83%) 6 (33%) 2 (11%) 2 (11%) 2 (11%) 0 (0%) 5 (28%)
openhre 79 70 (89%) 62 (89%) 52 (74%) 4 (6%) 32 (46%) 1 (1%) 1 (1%) 36 (51%)
dash-framework 14 12 (86%) 2 (17%) 1 (8%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
io-project 14 9 (64%) 5 (56%) 4 (44%) 1 (11%) 0 (0%) 0 (0%) 0 (0%) 2 (22%)
caloriecount 571 444 (78%) 357 (80%) 213 (48%) 41 (9%) 80 (18%) 29 (7%) 0 (0%) 82 (18%)
twfbplayer 85 58 (68%) 49 (84%) 20 (34%) 0 (0%) 18 (31%) 0 (0%) 0 (0%) 17 (29%)
sfmis 18 14 (78%) 13 (93%) 8 (57%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 7 (50%)
wheelwebtool 92 78 (85%) 64 (82%) 45 (58%) 3 (4%) 30 (38%) 1 (1%) 0 (0%) 25 (32%)
javathena 48 39 (81%) 37 (95%) 30 (77%) 11 (28%) 5 (13%) 0 (0%) 0 (0%) 21 (54%)
gaj 0 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
ipcalculator 10 6 (60%) 4 (67%) 3 (50%) 1 (17%) 0 (0%) 0 (0%) 0 (0%) 2 (33%)
xbus 177 96 (54%) 64 (67%) 32 (33%) 9 (9%) 4 (4%) 2 (2%) 0 (0%) 32 (33%)
ifx-framework 3899 3899 (100%) 1190 (31%) 168 (4%) 0 (0%) 1180 (30%) 0 (0%) 0 (0%) 1178 (30%)
shop 33 31 (94%) 29 (94%) 13 (42%) 0 (0%) 9 (29%) 0 (0%) 0 (0%) 7 (23%)
at-robots2-j 191 132 (69%) 114 (86%) 68 (52%) 5 (4%) 24 (18%) 4 (3%) 0 (0%) 21 (16%)
jaw-br 22 10 (45%) 9 (90%) 5 (50%) 1 (10%) 2 (20%) 0 (0%) 0 (0%) 2 (20%)
jopenchart 28 19 (68%) 16 (84%) 10 (53%) 1 (5%) 6 (32%) 0 (0%) 0 (0%) 1 (5%)
jiggler 124 112 (90%) 96 (86%) 76 (68%) 14 (13%) 56 (50%) 0 (0%) 0 (0%) 30 (27%)
gfarcegestionfa 46 38 (83%) 25 (66%) 7 (18%) 7 (18%) 5 (13%) 1 (3%) 0 (0%) 6 (16%)
dcparseargs 6 6 (100%) 4 (67%) 1 (17%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (17%)
classviewer 6 5 (83%) 5 (100%) 5 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (20%)
jcvi-javacommon 305 218 (71%) 165 (76%) 123 (56%) 59 (27%) 38 (17%) 56 (26%) 1 (0%) 65 (30%)
quickserver 63 53 (84%) 44 (83%) 34 (64%) 2 (4%) 9 (17%) 0 (0%) 0 (0%) 17 (32%)
jclo 4 1 (25%) 1 (100%) 1 (100%) 0 (0%) 1 (100%) 0 (0%) 0 (0%) 0 (0%)
celwars2009 7 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
heal 89 83 (93%) 82 (99%) 37 (45%) 8 (10%) 14 (17%) 1 (1%) 0 (0%) 38 (46%)
feudalismgame 11 9 (82%) 6 (67%) 1 (11%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (11%)
trans-locator 5 4 (80%) 4 (100%) 2 (50%) 0 (0%) 1 (25%) 0 (0%) 0 (0%) 0 (0%)
newzgrabber 39 24 (62%) 22 (92%) 14 (58%) 1 (4%) 6 (25%) 0 (0%) 0 (0%) 4 (17%)
falselight 8 8 (100%) 5 (63%) 0 (0%) 1 (13%) 1 (13%) 0 (0%) 0 (0%) 0 (0%)
All systems 16,603 13,791 (83%) 8,939 (54%) 4,819 (29%) 856 (5%) 2,541 (15%) 305 (2%) 51 (0,3%) 5,405 (33%)



of Test Code Duplication that we found is slightly higher
with respect to what reported in [6] for manually produced
test suites. These design problems are probably generated
because the automatic test case generation tools have, as
primary objectives, the goal to cover as more as possible
the production classes, without considering the quality of
the generated test classes. An interesting example, shown
in Listing 4 regards the case of the JGaap project, where the
DocumentEvoSuiteTest JUnit class is a↵ected by an Asser-
tion Roulette instance.

Listing 3: Test Method automatically generated
by EvoSuite containing an Assertion Roulette test
smell.

1 pub l i c void t e s t 8 ( ) throws Throwable {
2 Document document0=new Document ( ”” , ””) ;
3 as se r tNotNul l ( document0 ) ;
4
5 document0 . procText . add ( ( Character ) ’ s ’ ) ;
6 S t r ing s t r i n g 0 = document0 . s t r i n g i f y ( ) ;
7 a s s e r tEqua l s ( ”s ” , document0 . s t r i n g i f y ( ) ) ;
8 as s e r tNotNul l ( s t r i n g 0 ) ;
9 a s s e r tEqua l s ( ”s ” , s t r i n g 0 ) ;

10 }

Here, there are four assertions without a clear explanation
of their individual responsibility. Indeed, it can be di�cult
to understand what is the behavior under test, as well as
whether the generated assertions are correct. As recently
demonstrated by Panichella et al. [36], problems like this
can have a huge impact on the ability of developers in finding
faults in production code.

Listing 4: Test Method automatically generated by
EvoSuite containing an Eager Test smell.

1 pub l i c void t e s t 2 ( ) throws Throwable {
2 SecureMessageServ iceCl i ent Impl

secureMessageServ i ceCl i ent Impl0 = new
SecureMessageServ iceCl i ent Impl ( ”VH : A7ZXfnoaf
I%e<6” , 0 , 0 , (RSAPublicKey ) nu l l , (

SecureMessageServ iceCl ientAdapter ) nu l l ) ;
3 SecureMessageServ iceCl ientMessageImpl

secureMessageServ iceCl i entMessageImpl0 = (
SecureMessageServ iceCl ientMessageImpl )
s ecureMessageServ i ceCl i ent Impl0 . sendMessage ( (
Map) nul l , ( Object ) ”11111111111111111 ” , ”VH
: A7ZXfnoaf I%e<6”) ;

4 as se r tNotNul l (
secureMessageServ iceCl i entMessageImpl0 ) ;

5
6 secureMessageServ i ceCl i ent Impl0 . cance l ( (

SecureMessageServ iceCl ientMessage )
secureMessageServ iceCl i entMessageImpl0 ) ;

7 secureMessageServ i ceCl i ent Impl0 . cance l ( (
SecureMessageServ iceCl ientMessage )
secureMessageServ iceCl i entMessageImpl0 ) ;

8 a s s e r tEqua l s ( ”VH : A7ZXfnoaf I%e<6” ,
secureMessageServ iceCl i entMessageImpl0 .
g e tS t r i ng ( ) ) ;

9 }

Concerning Eager Test, several test classes automatically
generated are a↵ected by such a smell (33% of the classes in
our dataset). An example of test class containing this smell
is the SecureMessageServiceClientImplEvoSuiteTest from

the Vuze project. Listing 4 clearly shows that the test
method named test2 is responsible to check, on the one
hand, the behavior of the production method sendMessage

through the usage of the assertion on line 4, and on the other
hand the production method getString on line 8. Also in
this case, the presence of such smell can seriously a↵ects the
comprehensibility of the behavior of the test class, as well
as the maintenance activities aimed at modifying it [6].

Finally, Test Code Duplication a↵ects the 30% of the JU-
nit classes in the SF110 dataset. Looking in depth into the
causes for this smell for generated tests, we observed that
the main problem is that EvoSuite (but also the other au-
tomatic test case generation tools) does not generate text
fixtures, and this entails a duplication of lines of code over
all the test methods contained in a JUnit class. An exam-
ple is shown below, where a pair of test methods from the
GenericPropertiesCreatorEvoSuiteTest class of the Weka

project is proposed.

Listing 5: Pair of Test Methods automatically gen-
erated by EvoSuite containing a Test Code Duplica-
tion smell

1 pub l i c void t e s t 8 ( ) throws Throwable {
2 Gener i cProper t i e sCrea to r

g ene r i cP rope r t i e sCr ea t o r 0 = new
Gener i cProper t i e sCrea to r ( ) ;

3 boolean boolean0 = gene r i cP rope r t i e sCr ea to r 0 .
i sVal idClassname ( ”⇤(Uyn�KZX!S$YwYJaZV”) ;

4 a s s e r tEqua l s ( f a l s e , g ene r i cP rope r t i e sCr ea t o r 0 .
g e tExp l i c i tP r op sF i l e ( ) ) ;

5 a s s e r tEqua l s ( ”weka/ gui /Gener icObjectEditor .
props ” , g ene r i cP rope r t i e sCr ea t o r 0 .
getOutputFilename ( ) ) ;

6 a s s e r tEqua l s ( ”weka/ gui /
Gener i cProper t i e sCrea to r . props ” ,
g ene r i cP rope r t i e sCr ea t o r 0 . getInputFi lename ( ) )
;

7 a s s e r tEqua l s ( f a l s e , boolean0 ) ;
8 }

1 pub l i c void t e s t 9 ( ) throws Throwable {
2 Gener i cProper t i e sCrea to r

g ene r i cP rope r t i e sCr ea t o r 0 = new
Gener i cProper t i e sCrea to r ( ) ;

3 boolean boolean0 = gene r i cP rope r t i e sCr ea to r 0 .
i sVal idClassname ( ”%1rZ0LSExSk%”) ;

4 a s s e r tEqua l s ( ”weka/ gui /Gener icObjectEditor .
props ” , g ene r i cP rope r t i e sCr ea t o r 0 .
getOutputFilename ( ) ) ;

5 a s s e r tEqua l s ( ”weka/ gui /
Gener i cProper t i e sCrea to r . props ” ,
g ene r i cP rope r t i e sCr ea t o r 0 . getInputFi lename ( ) )
;

6 a s s e r tEqua l s ( true , boolean0 ) ;
7 a s s e r tEqua l s ( f a l s e , g ene r i cP rope r t i e sCr ea t o r 0 .

g e tExp l i c i tP r op sF i l e ( ) ) ;
8 }

The smell arises since both the methods share a portion of
code, i.e., the construction of the class GenericProperti-

esCreator. These lines of code are also shared by the other
test methods in the suite. This means that such lines should
be included in a separate method, namely the setUp one,



which is responsible for the setting of all the test methods.
The quite high di↵usion of this smell remarks the need to
automatically generate text fixtures. As for the other test
smells, we observed quite low di↵usion in the analyzed sys-
tems. These results are in line with what reported in [6] for
manually written test classes.

Table 4: Co-occurrences among Test Smells in the
SF110 Dataset

AR ET MG SE RO IT TCD
AR - 0.49 0.07 0.27 0.02 0.01 0.48
ET 0.91 - 0.10 0.24 0.04 0.01 0.50
MG 0.77 0.54 - 0.15 0.36 0.06 0.62
SE 0.96 0.45 0.05 - 0.02 0.01 0.67
RO 0.78 0.58 1.00 0.12 - 0.03 0.45
IT 0.73 0.59 1.00 0.16 0.16 - 0.80
TCD 0.80 0.45 0.10 0.32 0.03 0.01 -

Table 4 reports the results about the co-occurrences of test
smells inside the JUnit classes. The first interesting thing
to note is that all the test smells tend to co-occur frequently
with Assertion Roulette. On the one hand, the reason of
this result can be found in the high di↵usion of this smell
(occurring in the 54% of JUnit classes of the dataset). On
the other hand, smells as Sensitive Equality and Eager Test
are, in di↵erent ways, intrinsically related to the Assertion
Roulette smell. Indeed, if a test case contains several asser-
tions, then, it would likely contain a equality check through
the use of the toString method (i.e., the test case contains a
Sensitive Equality). Similarly, if a test case performs many
assertions, then it is reasonable to think that it checks more
than one method of the production class (i.e., it is also an
Eager Test). Another interesting relationship is the one be-
tween Mystery Guest and Resource Optimism. In this case,
when a test case uses external resources it is likely that it
also makes assumptions about the state or the existence of
such external resources. Potentially more interesting is what
we found about the co-occurrences between Mystery Guest
and Indirect Testing. In this case all the times that an in-
stance of Mystery Guest occurs, also an instance of Indirect
Testing is present. As shown in the example reported in
Listing 6, when a test case refers to an external resource,
it always uses an intermediate class in order to perform ac-
tions on that resources. Specifically, in the case of the test
methods test3 and test4 from the SweetHome3D project,
the goal is to test the SweetHome3D class. However, both the
tests use the intermediate class HomeFileRecorder in order
to perform operations on the class under test. As for Test
Code Duplication, this smell frequently occurs with the Indi-
rect Testing smell. Looking more in depth to the test cases
produced by EvoSuite, we observed that such co-occurrence
is due to the fact that the test cases refer to the intermediate
class using the same set of statements. The example in List-
ing 6 is also valid to explain this co-occurrence. Indeed, we
can see that both test3 and test4 refer to the intermediate
class through the usage of the same set of instructions, i.e.,
lines 4 and 5 of the test methods.

Listing 6: Pair of Test Methods automatically gen-
erated by EvoSuite containing Mystery Guest to-
gether with Indirect Testing and Test Code Dupli-
cation smells.

1 pub l i c void t e s t 3 ( ) throws Throwable {
2 SweetHome3D sweetHome3D0 = new SweetHome3D ( ) ;
3 HomeRecorder . Type homeRecorder Type0 =

HomeRecorder . Type .DEFAULT;
4 HomeFileRecorder homeFileRecorder0 = (

HomeFileRecorder ) sweetHome3D0 . getHomeRecorder
( homeRecorder Type0 ) ;

5 as se r tNotNul l ( homeFileRecorder0 ) ;
6 }

1 pub l i c void t e s t 4 ( ) throws Throwable {
2 SweetHome3D sweetHome3D0 = new SweetHome3D ( ) ;
3 HomeRecorder . Type homeRecorder Type0 =

HomeRecorder . Type .COMPRESSED;
4 HomeFileRecorder homeFileRecorder0 = (

HomeFileRecorder ) sweetHome3D0 . getHomeRecorder
( homeRecorder Type0 ) ;

5 HomeFileRecorder homeFileRecorder1 = (
HomeFileRecorder ) sweetHome3D0 . getHomeRecorder
( homeRecorder Type0 ) ;

6 as se r tNotNul l ( homeFileRecorder1 ) ;
7 assertSame ( homeFileRecorder1 ,

homeFileRecorder0 ) ;
8 }

For the other test smells, we did not observe any other in-
teresting relationship. Comparing our results with the ones
reported by Bavota et al. for manually written test classes
[6], we found several di↵erences. Indeed, they demonstrated
that all the test smells frequently co-occur with Assertion
Roulette, while in our study we found several peculiarities
that characterize automatic test case generation tools, such
as co-occurrences of di↵erent types of test smells inside JU-
nit test classes.

Table 5: Correlations between Structural Charac-
teristics and Test Smell Presence (PMCC)

# Classes # JUnit Classes LOC JUnit LOC
Assertion Roulette 0.98 0.95 0.94 0.98
Eager Test 0.94 0.80 0.98 0.98
Mystery Guest 0.78 0.58 0.79 0.74
Sensitive Equality 0.57 0.80 0.32 0.45
Resource Optimism 0.58 0.44 0.56 0.55
Indirect Testing 0.40 0.19 0.36 0.24
Test Code Duplication 0.95 0.97 0.90 0.96

As additional analysis, we also verify possible correlations
between the presence of test smells and peculiar system’s
characteristics. Table 5 reports the PMCC for the analyzed
correlations. As we can see, there are many strong corre-
lations between the system characteristics and the presence
of test smells in their test classes. Indeed, with the ex-
ception of Indirect Testing, all the test smells have positive
correlations with all the structural characteristics taken into
account. In other words, the larger the system (in terms of
number of classes, number of JUnit classes, production class
LOC, or JUnit class LOC), the higher the likelihood that its
JUnit classes are a↵ected by Assertion Roulette, Eager Test,
Mystery Guest, Sensitive Equality, Resource Optimism, and
Test Code Duplication. This result strongly di↵ers from the



findings reported for manually written tests [6]. However,
such di↵erences can be explained by looking more in depth
into the way the test case generation process is performed in
EvoSuite. Specifically, considering that the main goal is to
cover as many branches as possible, it is reasonable to think
that projects having large size are more complex, and thus,
more di�cult to test. Hence, in order to test large and/or
complex classes likely a more complex test code is needed.
Similarly, to obtain higher coverage often the instantiation
of di↵erent objects that interact with the class under test
might be required. As a result, test classes become more
complex as well, leading to the introduction of test smells.
Moreover, while developers can keep under control the qual-
ity of source code while writing test classes, an automatic
tool cannot do this if not property set.

Summary for RQ1. Over the 110 software projects consid-
ered in this study, we observed that 83% of them are a↵ected
by at least one test smell. Thus, we can conclude that test
smells are highly di↵used in the automatically generated test
classes.

Summary for RQ2. Three test smells, i.e. Assertion
Roulette, Eager Test, and Test Code Duplication, frequently
occur in test classes automatically generated by EvoSuite.
This can be mainly due to the fact that automatic test case
generation tools do not consider test code quality as one of
the objectives to target in their process.

Summary for RQ3. We found that all the test smells
frequently co-occurs with Assertion Roulette. At the same
time, we also observed some interesting co-occurrences be-
tweenMystery Guest and Resource Optimism, Mystery Guest
and Indirect Testing, and between Indirect Testing and Test
Code Duplication. We investigated the reasons behind these
results, finding di↵erent strategies performed by EvoSuite
during the process of test case generation that tend to in-
crease the number and the co-existance of di↵erent test smells
in the automatically generated JUnit classes.

Summary for RQ4. We found that 6 test smells, i.e.,
Assertion Roulette, Eager Test, Mystery Guest, Sensitive
Equality, Resource Optimism, and Test Code Duplication,
have strong correlations with the size of the system, in terms
of number of classes, number of JUnit classes, production
class LOC, and JUnit class LOC. This means that, as the
size of a system increases, automatic test case generation
tools do not have appropriate mechanisms to deal with such
complexity.

5. THREATS TO VALIDITY
This section discusses the threats that could a↵ect the va-
lidity of our study.

As for threats related to the relationship between theory
and observation (construct validity), the main threat in our
study is about the way we detected test smells in the con-
sidered projects. In order to mitigate the problem, we rely
on a test smell detection tool which has a very good preci-
sion (88%) and recall (100%), and that has been successfully
used in previous work [6]. However, we cannot exclude the
presence of false positives/negatives in the set of detected
test smells.

As for external validity threats, one of the problems usually
considered is related to the generalization of our findings.
To produce highly reliable results, we conducted our study
on a statistically significant sample of the projects available
on Sourceforge, namely the SF110 dataset originally pro-
duced by Fraser and Arcuri [15] with the specific goal of
replicability of results. However, due to the limitations of
the detection tool that we used, we limited the context of
our study only to Java systems. Replications of our work on
systems written in other languages are therefore desirable.

6. CONCLUSION
In this paper we conducted an empirical investigation on
the di↵usion of test smells in the JUnit test classes automati-
cally generated by EvoSuite [14] on 110 open source software
projects from the SF110 Corpus of Classes [15]. Results in-
dicate that (i) test smells are largely di↵used, i.e., 83% of
JUnit classes are a↵ected by at least one test smell; (ii) the
Assertion Roulette test smell is the most frequent one (con-
tained in 54% of classes), followed by Test Code Duplication
and Eager Test (contained in 33% and 29% of JUnit classes,
respectively); (iii) all the test smells frequently co-occur with
Assertion Roulette; (iv) three pairs of smells, namely Mys-
tery Guest and Resource Optimism, Mystery Guest and In-
direct Testing, and Indirect Testing and Test Code Duplica-
tion tend to co-occur quite frequently; and (v) all the test
smells but For Testers Only and Indirect Testing have strong
positive correlations with structural characteristics of a sys-
tem, such as size and number of classes in the project. The
results of our study provide two valuable findings for the
research community:

Lesson 1. Current implementations of search based algo-
rithms for automatic test case generation do not take into
account the quality of the produced test classes. This im-
plies the introduction of several design flaws, such as Asser-
tion Roulette and Eager Test smells, that potentially have
a huge impact on comprehensibility and maintainability [6],
but can also have a negative impact on the e↵ectiveness of
test cases and on the other testing-related activities, such as
the task to find faults [36].

Lesson 2. Automatic test case generation tools do not pro-
duce text fixtures during their computation, and this implies
the introduction of several code clones in the resulting JUnit
classes. This peculiarity can negatively a↵ect the maintain-
ability of test classes because of the e↵ort needed for modi-
fying all the clones in response to a change in the production
code [49].

These observations represent the main input for our future
research agenda, mainly focused on designing and develop-
ing new algorithms that, on the one hand, try to balance
branch coverage criteria with test code quality and, on the
other hand, try to automatically create text fixtures for test
cases generated using existing tools.
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