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Abstract Regression testing is the activity performed by developers to check
whether new modifications have not introduced bugs. A crucial requirement
to make regression testing effective is that test cases are deterministic. Unfor-
tunately, this is not always the case as some tests might suffer from so-called
flakiness, i.e., tests that exhibit both a passing and a failing outcome with the
same code. Flaky tests are widely recognized as a serious issue, since they hide
real bugs and increase software inspection costs. While previous research has
focused on understanding the root causes of test flakiness and devising tech-
niques that automatically fix them, in this paper we explore an orthogonal
perspective: the relation between flaky tests and test smells, i.e., suboptimal
development choices applied when developing tests. Relying on (1) an analysis
of the state-of-the-art and (2) interviews with industrial developers, we first
identify five flakiness-inducing test smell types, namely Resource Optimism,
Indirect Testing, Test Run War, Fire and Forget, and Conditional Test Logic,
and automate their detection. Then, we perform a large-scale empirical study
on 19,532 JUnit test methods of 18 software systems, discovering that the
five considered test smells causally co-occur with flaky tests in 75% of the
cases. Furthermore, we evaluate the effect of refactoring, showing that it is
not only able to remove design flaws, but also fixes all 75% flaky tests causally
co-occurring with test smells.
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1 Introduction

Test cases form the first line of defense against the introduction of software
faults, especially when testing for regression faults [1, 2, 3]. As such, with
the help of testing frameworks like, for example, JUnit developers create test
methods and run these periodically on their code [1, 4, 5, 6]. The entire team
relies on the results from these tests to decide on whether to merge a pull
request [7] or to deploy the system [8, 9, 10, 11]. When it comes to testing,
developer productivity is partly dependent on both (i) the ability of the tests
to find real problems with the code being changed or developed [8, 12] and (ii)
the cost of diagnosing the underlying cause in a timely and reliable fashion [13].

Unfortunately, test suites are not immune to bugs: indeed, they often suffer
from issues that can preclude the effective testing of software systems [14, 15].
Besides functional bugs, test code flakiness represents a typical bug affecting
test suites [8]. Flaky tests are tests that exhibit both a passing and a fail-
ing result with the same code [8], being therefore unreliable test cases whose
outcome is not deterministic. The harmfulness of flaky tests is widely known
and recognized by both researchers and practitioners: as a matter of fact,
dozens of daily discussions are opened on the topic on social networks and
blogs [8, 16, 17, 18, 19]. More specifically, there are three key issues associated
with the presence of flaky tests: (i) they may hide real bugs and are hard to re-
produce due to their non-determinism [20]; (ii) they increase maintenance costs
because developers may have to spend substantial time debugging failures that
are not really failures, but just flaky [21], and (iii) from a psychological point
of view flaky tests can reduce a developer’s confidence in the tests, possibly
leading to ignoring actual test failures [19].

All the aforementioned problems pushed the research community to study
test code flakiness deeper. Most of the effort has been devoted to understanding
the causes behind the presence of flaky tests [20, 22, 23, 24] and in the creation
of automated techniques able to fix them [25, 26, 27]. Despite the notable
advances produced so far, most of the previous studies in the field focused the
attention on some specific causes possibly leading to the introduction of flaky
tests, such as concurrency [27, 28, 29] or test order dependency [24] issues. As
a consequence, they proposed ad-hoc solutions that cannot be used to fix flaky
tests characterized by other root causes. This observation was also reflected in
the findings of an empirical study on the motivations behind test code flakiness
conducted by Luo et al. [20]: as highlighted by the authors, the problems faced
by previous research only represent part of whole story and a deeper analysis
of possible fixing strategies of other root causes (e.g., flakiness due to wrong
usage of external resources) is still missing.

In our previous work [30], we started investigating the role of test smells [31,
32, 33], i.e., poor design or implementation choices applied by programmers
during the development of test cases, as indicators of the presence of flaky
tests. Specifically, from the catalog proposed by Van Deursen et al. [31] we
identified three test smell types, i.e., Resource Optimism, Indirect Testing and
Test Run War, whose definitions were closely connected to the concept of
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test code flakiness. From our empirical investigation—conducted on 19,532
JUnit test methods of 18 large software systems—we discovered that 61%
of flaky tests were affected by one of the test smells that we considered. A
further investigation revealed that 54% of flaky tests were caused by problems
attributable to the characteristics of the smells, and the removal of such flaws
eliminated both the design problem and test code flakiness.

In this paper, we extend our previous work [30] by enlarging the empirical
knowledge on the relation between test smells and flaky tests. We first system-
atically elicit a catalog of test smells whose characteristics recall the concept
of test flakiness—we call them flakiness-inducing test smells—by (1) analyz-
ing the state-of-the-art and (2) performing semi-structured interviews with 10
software testers. Secondly, we analyze the causal co-occurrence between these
smells and flaky tests. Finally, we analyze whether the removal of such new
test smells can be considered a valid flaky tests fixing strategy.

More specifically, we:

1. Define a catalog of flakiness-inducing test smells by means of a mixed-
method approach [34] that takes into account both the research conducted
in the field and the opinions of 10 software testers having more that 20
years of experience in testing of software systems. From this study, we
define five flakiness-related test smells, i.e., Resource Optimism, Indirect
Testing, Test Run War, Fire and Forget, and Conditional Test Logic, along
with the corresponding removal operations;

2. Devise and/or evaluate detection strategies for the test smells in the cata-
log, coming up with a detection tool that practitioners can use to identify
test smells;

3. Analyze to what extent the defined flakiness-inducing test smells causally
co-occur with flaky tests in our dataset and evaluate how much test smell
removal can be applied to fix those instances;

The results of our study confirm what we previously observed: test smells
represent a precious source of information to locate flaky tests. Indeed, 75%
of the tests in our dataset causally co-occur with one of the five test smells
considered. Moreover, test smell removal represents a lightweight and powerful
technique to remove both test smells and test code flakiness.

To sum up, this paper provides the following contributions:

– A catalog of flakiness-inducing test smells, that (i) practitioners can use to
learn about the bad practices to avoid when implementing test cases with
the aim of reducing the risk of test flakiness and (ii) researchers and tool
vendors can exploit to prioritize the definition of new techniques for the
automated removal of these smells;

– The definition of accurate detection strategies for two of the smells included
in the catalog, i.e., Fire and Forget and Conditional Test Logic, as well as
a replication of the performance evaluation for the detector of Resource
Optimism, Indirect Testing, and Test Run War ;
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– An empirical study that demonstrates the relation between test smells and
flaky tests, and that shows the extent to which the two phenomena are
related to each other and how removal of test smells can be exploited to
fix test code flakiness.

– Two new large datasets reporting (1) the presence of flaky tests in the
considered systems and (2) the list of the smelliness-inducing test smells.
They can be exploited by other researchers to further study the problem
of test flakiness as well as how test code quality relates to flaky tests.

Structure of the paper. The remainder of this paper is organized as follows.
Section 2 presents the elicitation strategies used to define a catalog of flakiness-
inducing test smells as well as the new mechanisms devised for detecting them.
Section 3 reports the empirical study planning and design, while Section 4
discusses the results of the study. In Section 5 we debate about the possible
threats that could have influenced our results. Subsequently, in Section 6 we
report the literature related to flaky tests and test smells before concluding in
Section 7.

2 Toward a Catalog of Flakiness-inducing Test Smells

This section reports the methodology used to elicit a catalog of flakiness-
inducing test smells and describes the high-level detection mechanisms for
automating their identification.

2.1 Defining the Catalog

In the following subsections, we describe the methodology followed to define
the catalog as well as the resulting set of flakiness-inducing test smells.

2.1.1 Test Smell Discovery Procedure

In a recent study, Garousi and Küçük [35] proposed a multivocal literature
mapping [36] aimed at reporting all the test smells defined so far by both
scientific research papers and grey literature (e.g., practitioners’ blog posts,
white papers, and presentation videos). As a result, they found 126 test smell
types belonging to 8 macro-categories (e.g., dependency- or design-related).

Among all the test smells defined so far, our aim was to identify the subset
of them whose definition might indicate some sort of test flakiness: for this
reason, we started the definition of our catalog by selecting, from the smells
reported in the paper by Garousi and Küçük [35], those having the desired
characteristic. At the same time, since there might exist further bad design
practices inducing test flakiness that are not included in the multivocal litera-
ture mapping of Garousi and Küçük [35], we complemented the state-of-the-art
analysis with semi-structured interviews involving 10 software testers.
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In the following, we expose the methodology adopted in each of the two
steps.

State-of-the-art analysis. To identify which of the smells reported in the
reference multivocal literature review [35] may have an impact on test flakiness,
we systematically inspected all the smell definitions. In particular, one of the
authors of this paper played the role of inspector ; given the entire list of
test smells proposed by Garousi and Küçük [35], his task was to mark each
definition as flakiness-inducing or non-flakiness-inducing. Whenever needed,
the inspector opened a discussion with the other author of this paper on the
actual relationship between a certain test smell and the possibility that it may
produce a flakiness behavior in the affected test case. Following this process,
we identified five flakiness-inducing test smell types.

While the constant discussion between the inspectors mitigated some
threats to the validity of the selected flakiness-inducing test smells, we also per-
formed a sanity-check by involving two external professional software testers
having 7 and 10 years of testing experience, respectively. They were contacted
via e-mail by the first author of this paper, who selected them from his personal
contacts. We provided the external inspectors with a spreadsheet containing
the list of test smells coming from the work by Garousi and Küçük [35] and
asked them to categorize the test smells as flakiness-inducing or non-flakiness-
inducing, i.e., using the same procedure as the original classification. Once the
task was completed, the professional testers sent back the spreadsheet file
annotated with their categorization. The classification as done by both pro-
fessional testers individually was identical to the one done in the first phase.
As a consequence, we are confident of the selection procedure performed.

Semi-structured interviews. Despite the large number of test smells (126)
defined so far and reported in the reference multivocal literature review [35],
we could not exclude that some sub-optimal practices impacting test flakiness
might not have been reported yet. For this reason, to be as cautious as possible
with respect to the observations of this study, we complemented the state-
of-the-art analysis with semi-structured interviews involving 10 professional
software testers having more than 20 years of experience in testing of modern
software systems and coming from one of our industry partners. More in detail,
they work for different companies, ranging from financial activities to public
administration services. Most of them (7 out of the total 10) usually develop
in Java, while the remaining ones work with Python. As part of their job,
they have to design test cases, so they are very experienced in how to create
tests and how to automate them. At the same time, their companies have
up to 50 new flaky tests per week, and they are sometimes responsible to fix
that flakiness. This makes them particularly suitable for the kind of study we
performed.

The interviews were conducted by both authors of this paper, took 2.30
hours in total, and were semi-structured, a form of interview often used in
exploratory investigations to understand phenomena and seek new insights
[37]. The focus of the interviews was to make participants discuss about the bad
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practices related to the emergence of a flaky test and, thus, all the questions
were centered on whether there exist peculiar sub-optimal implementation
choices that may induce a flakiness behavior of a test case. For this reason,
all the questions targeted the analysis of their experience as testers that deal
with flaky tests, with the aim of (i) eliciting bad practices possibly resulting
in the definition of new test smell types or (ii) confirming existing ones.

The answers of the interviewees were transcribed to ease the data analysis.
Then, both the authors of this paper performed an open coding process on the
reported bad practices and jointly discuss them to identify possible test smells.
This process did not lead to the emergence of additional test smell types,
however it further confirmed those emerged in the state-of-the-art analysis.
Thus, the semi-structured interviews can be seen as an additional validation
of the activities performed to elicit flakiness-inducing test smells.

2.1.2 Resulting Catalog

In the following paragraphs, we describe the five test smell types that came
out of the test smell discovery phase.

Resource Optimism. The first test smell comes from the catalog by
Van Deursen et al. [31], and was explicitly defined by the authors as a
smell that may cause flakiness.

Definition. Test code that makes optimistic assumptions about the state
or the existence of external resources.

Motivation. The outcome of the test method may depend on the state/ex-
istence of the external resource, meaning that it can exhibit a passing/
failing behavior based on the ability to properly acquire the external re-
source.

Detection Mechanism. JUnit test methods using an external resource
without allocating it explicitly in the setUp method [31].

Removal. To remove the smell, Van Deursen et al. recommended the use
of Setup External Resource strategy, i.e., explicitly allocating the external
resources before testing (in the setUp method), being sure to release them
when the test method ends (in the tearDown method) [31].

Indirect Testing. The second test smell comes from the catalog by Van
Deursen et al. [31], and is related to the way a test method interacts with
the production code.

Definition. Test methods affected by this smell test different classes with
respect to the production class corresponding to the test class [31].

Motivation. Indirect Testing methods might not properly set the environ-
ment needed to test production methods belonging to different classes:
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as a consequence, their outcome may depend on the order of execution
of test methods, i.e., the outcome may change if the environment is or is
not set before calling the smelly test.

Detection Mechanism. JUnit test methods invoking, besides methods of
the corresponding production class, methods of other classes in the pro-
duction code [31].

Removal. To remove this smell, Van Deursen et al. firstly suggest the
application of an Extract Method refactoring [38] able to isolate the part
of the method that actually tests different objects.

Test Run War. This smell belongs to the catalog by Van Deursen et al.
[31] and revolves around the allocation of test resources.

Definition. This smell arises when a test method allocates resources that
(i) are also used by other test methods or (ii) interact between them in
an unstable manner (within the same test method) [31].

Motivation. The allocation of resources to multiple tests might cause
possible resource interferences making the outcome of a test non-
deterministic. Similarly, a unstable interaction between objects in a test
might lead to intermittent failures.

Detection Mechanism. JUnit test methods that allocate resources that
are also used by other test methods (e.g., temporary files) or that contains
objects interacting with each other in a suspicious manner in the same
thread [31].

Removal. The original operation associated with the smell is the Make
Resource Unique, which consists of creating unique identifiers for all re-
sources that are allocated by a test case [31]. At the same time, the
Decouple Objects [35] can be adopted to make the objects used by the
test independent.

Fire and Forget. This smell was identified by Garousi and Küçük [35]
analyzing the grey literature on test smells.

Definition. A test that is at risk of exiting prematurely because it does
not properly wait for the results of external calls.

Motivation. The missing control of the runtime environment might nat-
urally lead to intermittent failures due to the wrong management of the
resources or to unexpected events.

Detection Mechanism. JUnit test methods that do not properly wait for
the ending of the operations performed in a thread.
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Removal. The operation associated with this smell is called Add Await
Condition [35], and concerns the addition of an await condition that al-
lows the execution of the test to be suspended until the return of the
called method.

Conditional Test Logic. The final test smell, also known as Indented
Test Code, belongs to the catalog by Meszaros [32].

Definition. Conditional Test Logic occurs when a test does more than the
required, by using control structures (if-else statements) that make its
outcome dependent on the execution path [32].

Motivation. Depending on the actual path executed, the test environment
may or may not be properly set, possibly causing issues due to test order
dependency [32].

Detection Mechanism. JUnit test methods using if-else constructs.

Removal. The removal of this smell consists of the application of an Ex-
tract Method refactoring [38] that isolates the different portions of code
that can be executed by the test.

The detection mechanisms have been automated in order to perform a
large-scale identification of the flakiness-inducing test smells. The specific tech-
nical rules implemented and their evaluation are reported in the following
section.

3 Empirical Study Definition and Design

The goal of the study is to understand whether specific test smell types can
represent the underlying cause of test flakiness, with the purpose of evaluating
to what extent test smell removal operations can be successfully applied to fix
flaky tests by removing the test smells affecting the test code. The perspective is
that of both researchers and practitioners, who are interested in understanding
the benefits of test smell removal for improving the effectiveness of test suites.

The specific research questions investigated in this study are listed in the
following:

– RQ1: What are the causes of test flakiness?

– RQ2: To what extent can flaky tests be explained by the presence of test
smells?

– RQ3: To what extent does removal of test smells help in removing test
flakiness?
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The first research question was intended to be a preliminary analysis aimed
at understanding what are the causes leading tests to be flaky. This investi-
gation can be considered as a large-scale replication of the study proposed by
Luo et al. [20], who performed a similar analysis inspecting 201 commits that
likely fix flaky tests. The rationale behind this research question is twofold: on
the one hand, as our dataset is much larger than the one used by Luo et al.
[20], it is worth understanding whether their findings hold in our case; at the
same time, it allows us to identify the roots of the flaky tests considered in the
study, so that we can relate them to the symptoms behind test smells. With
RQ2 our goal was to perform a fine-grained investigation into the relationship
between test smells and flaky tests. In this way, we could understand whether
test smells can be actually induce test flakiness. Finally, RQ3 investigated the
ability of test smell removal strategies in fixing test code flakiness by removing
test smells. In this case, we aimed at assessing the extent to which such strate-
gies can be applied as flakiness fixing mechanisms. Our replication package is
available at [39].

Table 1: Characteristics of the Systems involved in the Study.
System Description Classes Methods KLOCs Test Methods
Apache Ant 1.8.3 Command-line tool to build systems 813 8,540 204 3,097
Apache Cassandra 1.1 Scalable DB Management System 586 5,730 111 586
Apache Derby 10.9 Relational DB Management System 1,929 28,119 734 426
Apache Hive 0.9 Data Warehouse Software Facilities Provider 1,115 9,572 204 58
Apache Ivy 2.1.0x Flexible Dependency Manager 349 3,775 58 793
Apache Hbase 0.94 Distributed DB System 699 8,148 271 604
Apache Karaf 2.3 Standalone Software Container 470 2,678 56 199
Apache Lucene 3.6 Search Engine 2,246 17,021 466 3,895
Apache Nutch 1.4 Web-search Software built on Lucene 259 1,937 51 389
Apache Pig 0.8 Large Dataset Query Maker 922 7,619 184 449
Apache Qpid 0.18 AMQP-based Messaging Tool 922 9,777 193 786
Apache Struts 3.0 MVC Framework 1,002 7,506 152 1,751
Apache Wicket 1.4.20 Java Serverside Web Framework 825 6,900 179 1,553
Elastic Search 0.19 RESTful Search Engine 2,265 17,095 316 397
Hibernate 4 Java Persistence Manager 154 2,387 47 132
JHotDraw 7.6 Java GUI Framework for Technical Graphics 679 6,687 135 516
JFreeChart 1.0.14 Java Chart Library 775 8,746 231 3,842
HSQLDB 2.2.8 HyperSQL Database Engine 444 8,808 260 59
Overall - 16,454 161,045 3,852 19,532

3.1 Context Selection

The context of the study was composed of (i) subject systems, and (ii) test
smells. As for the former, Table 1 reports the characteristics of the software
projects involved in the study. Their selection was driven by two main factors:
firstly, since we had to run test smell and flaky test detection tools, we limited
the analysis to open-source projects; secondly, we analyzed software systems
actually having test classes and having different size and scope. Thus, we ran-
domly selected 13 projects belonging to the Apache Software Foundation
from the list available on GitHub1, as well as other 5 projects belonging to

1 Available here: https://github.com/apache
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different communities. As for the test smells, we focused on the five flakiness-
inducing design issues in the catalog proposed in Section 2, i.e., Resource
Optimism, Indirect Testing, Test Run War, Fire and Forget, and Conditional
Test Logic.

Table 2: Rules Used for the Detection of Test Smells.

Test Smell Rule
Resource Optimism JUnit methods using an external resource (i.e., they use a variable of

type File) without checking its status (e.g., the methods exists or
isReadable are not called).

Indirect Testing JUnit methods invoking, besides methods of the corresponding pro-
duction class, methods of other classes in the production code.

Test Run War JUnit methods that allocate resources that are also used by other test
methods (e.g., temporary files)

Fire and Forget JUnit tests that do not properly wait for the return of a call.
Conditional Test Logic JUnit test methods using if-else constructs.

3.2 Detecting Test Smells

Once we had cloned the source code of the subject systems from the cor-
responding GitHub repositories (using the git clone command), we first
performed the automatic detection of the flakiness-inducing test smells and
evaluated the accuracy of such tools.

Test Smell Detection Procedure. Among all the detection tools proposed
in literature [40, 41, 42], we relied on the one devised by Bavota et al. [40]
for the detection of Resource Optimism, Indirect Testing, and Test Run War
instances. This tool implements a heuristic-based approach that analyzes code
metrics. It has been previously employed in several works in the area showing
good performance [40, 43, 44]. More specifically:

– The identification of Resource Optimism follows the guidelines defined by
Van Deursen et al. [31], checking whether a test method contained in a
JUnit class uses an external resource and does not check its status before
using it, respectively. From a technical point of view, the detector firstly
checks if a test instantiates a variable of type File: if so, it marks the
test as smelly in case (i) the existence of the variable is not preventively
checked (i.e., the method exists is not called); or (ii) the status is not con-
trolled (i.e., any of methods isReadable, isWritable, and isExecutable

is executed).

– In the case of Indirect Testing, the tool takes into account the method
calls performed by a certain test method, in order to understand whether
it exercises classes different from the production class it is related to. To
identify the class corresponding to a test, the detector employs a traceabil-
ity approach based on naming convention, i.e., it identifies the class under
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test by removing the string ‘Test’ from the name of the JUnit test class,
similarly to Zaidman et al. in [45].

– For Test Run War the tool evaluates whether (i) a test method allocates
resources that are referenced by other test methods in the same JUnit
class or (ii) a test method itself contains objects that interact with each
other in the same thread in a non-desirable manner. This means that if
a test instantiates a Java File, the detector extracts its path and checks
whether other test methods in the same class use it. If so, the test method is
marked as smelly. At the same time, the tool relies on the Infer toolkit2 to
perform thread-safety analysis [46] and identify possible violations leading
to concurrency issues. If the tool detects anomalous behaviors, the method
is marked as smelly.

As for the remaining two test smells in the catalog analyzed, i.e., Fire and
Forget and Conditional Test Logic, we noticed a lack of automated solutions
enabling their detection and, thus, we built our own identification mechanisms:

– In the case of Fire and Forget, the detector checks if a test performs an
external call followed by a Thread.sleep instruction. In this case, the
detector marks the test as smelly, since its waiting mechanism tightly de-
pends on the parameter passed to the function (i.e., the specified number
of milliseconds that a test should wait).

– Finally, the identification of Conditional Test Logic instances is based on
the definition of the smell: if a test uses an if-else statement, then it is
considered smelly.

For the sake of comprehensibility, a summary of the detection rules adopted
is reported in Table 2.

Test Smell Detection Performance. The proposed empirical study builds
upon the accuracy of the detection mechanisms we adopted: for instance, if the
identification approach used for Fire and Forget has a very low F-Measure,
then the overall results of the study might be seriously threatened. At the
same time, even though the rules adopted for some smells have already been
evaluated in previous work showing high performance [40], it is important
to understand whether such performance holds in our own context: indeed, as
recently pointed out [47], software engineering tools can sometimes be sensitive
to the dataset, meaning that it is not ensured that the performance of a tool is
the same when running it in a different context. Thus, having well-performing
tools is a key aspect to consider. To account for it, we performed a preliminary
analysis of the performance of the test smell detection rules.

To achieve this goal, we needed to build an oracle reporting the actual
test smell instances in the considered dataset. However, as a manual detection
of all the test smells affecting the 18 software systems in our dataset would
have been prohibitively expensive, we created a smaller sample, that we call
evaluation dataset. We randomly picked 3 projects from our initial dataset, i.e.,

2 https://fbinfer.com
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Apache Ant, Apache Lucene, and JHotDraw, thus taking into account
a total of 7,508 test methods. Then, we started the manual detection of the
flakiness-inducing test smells such tests contained. However, we evaluated the
detection rules after having defined them, and thus we might have been biased
when constructing the manually-validated test smell set, leading to mark as
smelly those instances presenting the characteristics used by the detectors (i.e.,
we might have been affected by the so-called Observer-expectancy effect [48]).
To avoid any form of bias and perform a fair evaluation, we then recruited
two external professional developers having more than 8 years of experience in
the development of software systems, actively working on the definition of test
cases in their own companies, and with a high experience in software design
and bad practices.

Specifically, the external inspectors were provided with the (i) original def-
inition of the test smells, (ii) the test code of the three considered projects,
and (iii) five spreadsheets, one for each test smell to analyze, each of them
containing the list of all the test methods belonging to the systems under
analysis, and that were used to classify instances of the five flakiness-inducing
test smells; they performed the task independently and were allowed to in-
spect the production code too, since it might be useful to properly assess the
existence of a test smell (e.g., in the case of Indirect Testing, they needed the
production code to understand whether a test case actually calls methods in
different methods than the production one). The task was to assign a truth
value in the set {true, false} to each of the 7,508 test test methods present in
the spreadsheets: the inspector assigned the value true when a code compo-
nent was affected by a certain test smell, false otherwise. Once the inspectors
had completed this task, the produced oracles were compared, and the inspec-
tors discussed the differences, i.e., test smell instances present in the oracle
produced by one inspector, but not in the oracle produced by the other. All
the test methods positively classified by both the inspectors were considered
as actual smells. As for the other instances, the inspectors opened a discussion
in order to resolve the disagreement and jointly took a decision. At the end
of this process, the oracle comprised 569 Resource Optimism, 472 Fire and
Forget, 389 Indirect Testing, 319 Test Run War, and 142 Condition Test Logic
instances.

To measure the level of agreement between the two inspectors, we com-
puted the Jaccard similarity coefficient [49], i.e., number of test smell instances
identified by both the inspectors over the union of all the instances identified by
them. The overall agreement between the two inspectors before the discussion
was 87%. Of the remaining 13% of the cases, they reached an agreement dur-
ing the discussion. Once we had built the manually-validated set of flakiness-
inducing test smells, we ran the test smell detection rules over the same set of
test methods and compared their output with the oracle. To measure the per-
formance of the detection mechanisms we computed three well-known metrics:
precision, recall, and F-Measure [50].

The results of the empirical assessment are reported in Table 3. As it is
possible to see, the detection mechanisms adopted have high accuracy for all
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Table 3: Test Smell Detection Performance - P=Precision; R=Recall; F-M=F-Measure.
Project Resource Optimism Indirect Testing Test Run War Fire and Forget Conditional Test Logic

P R F-M P R F-M P R F-M P R F-M P R F-M
Ant 100% 100% 100% 93% 90% 91% 84% 91% 87% 100% 100% 100% 100% 100% 100%
Lucene 100% 100% 100% 86% 82% 84% 88% 88% 88% 100% 100% 100% 100% 100% 100%
JHotDraw 100% 100% 100% 87% 92% 89% 83% 84% 83% 100% 100% 100% 100% 100% 100%
Overall 100% 100% 100% 89% 88% 89% 86% 88% 87% 100% 100% 100% 100% 100% 100%

the flakiness-inducing test smells (the F-Measure is never lower than 87%). On
the one hand, this confirms previous findings on the reliability of the detection
approach proposed by Bavota et al. [40] when employed for the identification
of Resource Optimism, Indirect Testing, and Test Run War instances; on the
other hand, this result highlights that the devised rules for Fire and Forget and
Obscure Test detection are highly effective and allow to perform an empirical
study that can properly draw conclusions on the relation between test smells
and flaky tests.

While the detection mechanisms are generally effective, it is worth noting
the presence of some false positives. In the case of Indirect Testing, these are
generally due to errors in the identification of the class under test: we identified
the exercised class by relying on a textual-based heuristic that simply removes
the string “Test” from the name of the JUnit class. However, sometimes it
happens that developers do not use such convention, invalidating our retrieval
mechanism and, therefore, not allowing the detection rule to work properly.
This indicates that more research on traceability might be beneficial also in
the context of test smell detection. On the other hand, false positive Test Run
War instances can be found in cases where test methods properly use shared
resources. Indeed, the fact that more methods use the same resource does
not directly imply concurrency problems: if the methods are always executed
independently, then they would not lead to the emergence of any problem.
A detection rule solely based on static analysis cannot properly consider the
context where the test is executed, meaning that more sophisticated dynamic
techniques could represent a valid alternative.

To generalize the achieved detection results over the entire dataset used in
the empirical study, we asked the two external inspectors to analyze a further
sample of 365 test smell instances identified by the detectors in the 15 subject
software projects excluded from the initial evaluation. Such a set represents
a 95% statistically significant stratified sample with a 5% confidence interval
of the 9,185 total smell instances detected by the tools over the systems that
were not considered in the initial evaluation. In this case, the inspectors could
only produce data useful to compute the precision of the detection strategies
(the recall could not be evaluated because of the lack of a comprehensive
oracle of test smells for the projects considered). As a result of this step,
the overall precision was 94%: thus, the performance was in line with that
achieved in the initial evaluation. All in all, we can claim that the accuracy of
the information provided by the detection mechanisms were sufficiently high
to properly perform our study.
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Fig. 1: Calibration of the parameter α used to identify flaky tests.

3.3 Detecting Flaky Tests

Once we had concluded the smell detection phase, we identified flaky tests
by running the JUnit classes present in each subject system multiple times,
checking the outcome of the tests over the different executions. Specifically,
each test class was run α times: if the output of a test method was different
in at least one of the α runs, then a flaky test was identified. Since the re-
lated literature did not provide clues on the suitable number of runs needed
to accurately identify a flaky test, we empirically calibrated such a param-
eter on the evaluation dataset previously adopted for the assessment of the
test smell detection rules, i.e., Apache Ant, Apache Lucene, and JHot-
Draw. In particular, we experimented with different values for the parameter,
i.e., α = 3, 5, 7, 10, 15, 20, 30, evaluating how the number of flaky tests found
changed based on the number of runs. The results of the calibration are re-
ported in Figure 1. As it is possible to observe, a number of runs lower than
10 does not allow the identification of many flaky tests, while α = 10 repre-
sents the minimum number of runs ensuring the identification of the maximum
number of flaky tests contained in the system: indeed, setting α to higher val-
ues does not increase the number of non-deterministic tests, suggesting that
ten is the right number of runs to discover flaky tests. This statement is also
confirmed by the fact that α = 10 was the best solution for all three systems
that we experimented with. For this reason, in the context of the study we
ran each test case 10 times in order to identify flaky tests. From a technical
perspective, to run the tests we used the developer-provided build scripts, so
that we could exercise the source code with the exact environment set up by
the developers of the considered projects. To do so, we repeatedly run the mvn

verify command. Using this strategy, we identified 8,829 flaky tests (i.e., 45%
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of the test methods analyzed are flaky). It is worth noting that we cannot en-
sure that this identification strategy covers all the possible flaky tests, however
the results of the calibration allow us to be confident about its accuracy.

Table 4: Taxonomy of the root causes of flaky tests [20].

Category Description
Async Wait A test method making an asynchronous call and that does not wait

for the result of the call.
Concurrency Different threads interact in a non-desirable manner.
Test Order Dependency The test outcome depends on the order of execution of the tests.
Resource Leak The test method does not properly acquire or release one or more of

its resources.
Network Test execution depends on the network performance.
Time The test method relies on the system time.
IO The test method does not properly manage external resources.
Randomness The test method uses random number.
Floating Point Operation The test method performs floating-point operations.
Unordered Collections Test outcome depends on the order of collections.

3.4 Data Analysis

Once we had collected data about the presence of test smells and flaky tests
over the entire dataset considered, we answered RQ1 by manually investigat-
ing each flaky test identified in order to understand the root cause behind its
flakiness. These causes have been classified by relying on the taxonomy pro-
posed by Luo et al. [20], who identified ten common causes of test flakiness.
Table 4 reports, for each common cause, a brief description. Specifically, the
manual classification has been performed analyzing the (i) source code of the
flaky tests, and (ii) the JUnit log reporting the exceptions thrown when run-
ning the tests. The task consisted of mapping each flaky test onto a common
cause, and required approximately 200 man/hours. In Section 4 we report the
distribution of the flaky tests across the various categories belonging to the
taxonomy.

As for RQ2, we firstly determined which of the previously categorized flaky
tests were also affected by one of the test smells considered: this allowed us
to measure to what extent the two phenomena occur together. However, to
deeper understand the relationship between flaky tests and test smells a simple
analysis of the co-occurrences is not enough (e.g., a test affected by a Resource
Optimism may be flaky because it performs a floating point operation). For
this reason, we set up a new manual analysis process with the aim of measuring
in how many cases the presence of a test smell is actually related to the test
flakiness. In particular, the task consisted of the identification of the test smell
instances related to the root causes of test code flakiness previously classified:
this means that if the cause of test flakiness could be directly mapped on the
characteristics of the smell, then the co-occurrence was considered as causal,
i.e., we started from flaky tests and evaluated if the reason of flakiness was
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due to the presence of a test smell. For example, we marked a co-occurrence
between a flaky test and a Resource Optimism instance causal if the flakiness of
the test case was due to issues involving the management of external resources
(e.g., missing check of the status of the resource). In Section 4 we report
descriptive statistics of the number of times a given test smell is related to
each category of the flakiness motivations.

Finally, to answer RQ3 we manually analyzed the source code of the test
methods involved in a design problem and performed removal operations ac-
cording to the guidelines provided by Van Deursen et al. [31], Meszaros [32],
and Garousi and Küçük [35], depending on the type of smell considered. It
is worth highlighting that the authors of this paper have a programming and
testing experience of 10 and 20 years, respectively; moreover, they use to teach
testing practices in their universities. This task was performed by relying on
(i) the definitions of the removal operations and (ii) the examples provided in
the original catalogs. More specifically:

– In the case of Resource Optimism, we applied a Setup External Resource by
creating the content of a file directly in the setUp method. As suggested by
Van Deursen et al. [31], the ideal usage of external resources would be that
of building the content of a file directly when setting up the environment.
Thus, we simply pull the contents of the external resource into the setUp.
This was done by creating a String object containing the text of the
external file, and using the method println of the PrintWriter API to
actually create the file in the test directory. It is worth noting that the
application of this removal operation may produce less readable source
code, as the fixture may contain a large number of statements. We are
aware of this, however the definition of strategies that minimize the impact
of the modifications on other non-functional attributes of test code is not
part of this work; in other words, we simply followed the recommendations
of Van Deursen et al. [31] on how to remove Resource Optimism instances.

– As for the Indirect Testing, we applied the Extract Method refactoring [38],
thus creating new test methods and moving the parts of the smelly method
that actually tests different objects in such new tests.

– When removing Test Run War instance, we applied Make Resource Unique
and Decouple Objects operations. In cases where the former action was
needed, we duplicated the common resources (i.e., the files used by different
tests) assigning to them unique identifiers: in this way, each test worked on
independent resources. In cases where the latter refactoring was needed,
we modified the source code according to the recommendations made by
Infer, i.e., by synchronizing resources or adding missing checks on the
execution of the threads.

– In the case of Fire and Forget, the Add Await Condition consisted in adding
an explicit call to the await method of the Condition class3, in order to

3 https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/Condition.html
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allow the test to demand to the Java Virtual Machine the management of
the time required before executing other instructions.

– The removal operation suggested for Conditional Test Logic is the Extract
Method [38]. As explained above, in this case we created a new test for each
source code portion belonging to different conditions in the smelly test.
Thus, as a result each test method contained the code to test a specific
path.

It is important to remark that all the operations performed as well as the
way we executed them exactly follow the guidelines provided in previous work
[31, 32, 35]. Such operations only involve the test code, not producing side
effects on the production code. With respect to the removal of other forms
of design problems (e.g., code smells), fixing test smells is somehow easier
because most of the operations to be performed concern basic program trans-
formations. For example, the Setup External Resource operation is something
that can be easily automated, as it requires the moving of the file creation to
the setUp method; similarly, the Make Resource Unique is an action that re-
quires the duplication of the resource over the different test methods and thus
it is automated pretty easily. The discussion is similar also for the Add Await
Condition: in this case, a technique should only add an await statement in the
corpus of the test. On the other hand, the most complex removal action is the
Extract Method refactoring, because it first consists of understanding what is
the part of the test that should be moved in another method: as shown by pre-
vious research in the field (e.g., [51]), there are many different ways in which
this refactoring can be performed and automatically detecting them can be
very challenging. Thus, we can generally say that the research on automated
solutions for the removal of test smells should focus on those operations that
require the understanding of the actual portions of source code to be moved
or modified.

Overall, the manual removal required approximately 350 man/hours
(counting the effort spent by both the inspectors): we believe that most of
this effort might be semi-automated or completely automated. Indeed, differ-
ently from refactoring of production code [52], tests are generally much simpler
(e.g., limited size or number of external dependencies) and, therefore, their re-
organization might limit the typical issues of automated smell removal, e.g.,
the automatic update of the references of methods after an Extract Method
operation. Our future research agenda is focused on the definition of an auto-
mated solution for removing test smells.

The output of this phase consisted of the source code where the test smells
have been removed. Once we have re-organized the source code, we have re-
peated the flaky test identification, in order to evaluate whether the removal
operations had an effect on the test flakiness. In this stage, we followed the
same procedure applied to identify flaky tests in RQ1, i.e., we repeatedly run
the mvn verify command. It is worth noting that we re-run all the tests (not
only the one identified as flaky): this was done to ensure the same environment
and context before and after the test smell removal. In Section 4 we report
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Fig. 2: Distribution of flaky tests across different categories.

descriptive statistics of the number of times removal operations successfully
fix a flaky test instance by removing a test smell. In addition, we also provide
qualitative examples that show why test smell removal may be a powerful
method to remove test code flakiness.

4 Analysis of the Results

In this section we provide answers to the research questions previously formu-
lated, discussing each of them independently.

4.1 RQ1: Causes behind test code flakiness

Overall, we found 8,829 flaky tests over the total of 19,532 JUnit test methods
analyzed: thus, 45% of the tests suffer of flakiness and, therefore, in the first
place we can confirm previous findings on the relevance of the phenomenon
[14, 20]. Figure 2 depicts a pie chart reporting the distribution of the flaky
tests belonging to each of the categories defined by Luo et al. [20]. Looking at
the figure, we can observe that the most prominent causes of test code flakiness
are represented by the Async Wait, IO, and Concurrency.

In the case of Async Wait, we can confirm the findings by Luo et al.
[20]: this is actually the most frequent reason leading to flakiness. At the same
time, it is worth noting how close the definition of this category is with that of
the Fire and Forget test smell. As such, when a smell is concerned with miss-
ing controls over the runtime environment and, in particular, asynchronous
wait issues, there seems to exist a relationship between its presence and the
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appearance of flakiness. This aspect further motivates the analysis done in the
context of the following research questions.

On the other hand, with respect to the findings by Luo et al. [20], we can
observe a notable difference in the number of flaky tests due to IO reasons:
in our study this number is much higher than in the work by Luo et al. [20]
(≈ 22% vs ≈ 3%). This mismatch might be due to the larger dataset employed
in this study.

Listing 1: IO issue found in the Apache Pig project

1 @Test
2 public void testPigServerStore () throws Exception {
3 String input = "input.txt";
4 String output= "output.txt";
5 String data[] = new String [] {"hello\tworld"};
6 ExecType [] modes = new ExecType [] {ExecType.MAPREDUCE , ExecType.LOCAL};
7 PigServer pig = null;
8 for (ExecType execType : modes) {
9 try {

10 if(execType == ExecType.MAPREDUCE) {
11 pig = new PigServer(ExecType.MAPREDUCE , cluster.getProperties ());
12 } else {
13 Properties props = new Properties ();
14 props.put(MapRedUtil.FILE_SYSTEM_NAME , "file :///");
15 pig = new PigServer(ExecType.LOCAL , props);
16 }
17

18 Util.createInputFile(pig.getPigContext (), input , data);
19 pig.registerQuery("a = load ’" + input + " ’;");
20 pig.store("a", output);
21 pig.registerQuery("b = load ’" + output + "’;");
22 Iterator <Tuple > it = pig.openIterator("b");
23 Tuple t = it.next();
24 Assert.assertEquals("hello", t.get(0).toString ());
25 Assert.assertEquals("world", t.get(1).toString ());
26 Assert.assertEquals(false , it.hasNext ());
27 } finally {
28 Util.deleteFile(pig.getPigContext (), input);
29 Util.deleteFile(pig.getPigContext (), output);
30 }
31 }
32 } �

An interesting example is reported in Listing 1, where the test method
testPigServerStore of the JUnit class TestInputOutputFileValidator is
shown. The method refers to the sample files input.txt and output.txt to
test the storage capabilities of the Apache Pig server (see lines 2 and 3 in
Listing 1). While the createInputFile function creates a temporary input
file (line 18) that is then deleted after the test ends (line 28), the output.txt

is not subject to the creation procedure. As a consequence, the test appears to
be flaky in case this file is not present, i.e., if the output.txt is not available
the test raises a FileNotFoundException exception. Overall, we discovered
the presence of a consistent number of similar cases (1,982).

At the same time, we found that the distribution of flaky test motivations
is much more scattered across the different categories than was reported in
previous work [20]. Indeed, while Luo et al. found that almost 77% of flaky
tests were due to only three root causes, we instead observe that on a larger
dataset other categories are quite popular as well. For instance, Network
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is the cause of almost 10% of the total flaky tests. Finally, categories such
as Randomness, Resource Leak, Floating Point Operator, and Un-
ordered Collections represent a small portion of the root causes for test
code flakiness (8,34% in total).

Implications. In general, this preliminary analysis provides two key implica-
tions for both our study and the research community:

1. Most of the categories collecting the highest number of flaky tests are po-
tentially related to the presence of test smells. For instance, the IO issue
shown in Listing 1 clearly relates to the presence of a Resource Optimism
smell; issues due to asynchronous wait might relate to a Fire and Forget in-
stance, and Concurrency problems may be associated with the presence
of Test Run War smells that create resource interferences [20], and may
be avoided by adopting test smell removal operations. While a fine-grained
analysis of the relationship between flaky tests and test smells is presented
in the subsequent section, our results encourage the research community in
providing a deeper understanding on how source code quality attributes of
test code relate to test code effectiveness. At the same time, further studies
investigating the presence of additional (anti-)patterns behind flaky tests
might represent the next breakthrough step toward the comprehension and
resolution of the flakiness problem.

2. According to our results, some test flakiness motivations seem much more
important than others, leading to a natural prioritization of the activities
to be done by the research community in order to properly face the test
code flakiness problem. On the one hand, a higher attention to how devel-
opers introduce such issues might lead to the definition of methods that
preventively alert developers of the possible introduction of source code
potentially causing flakiness; on the other hand, techniques able to deal
with the major causes of flaky tests should be devised. In the context of
this paper, we try to assess the role of test smell detection and removal to
locate and/or remove test case flakiness.

Summary of RQ1. Almost 45% of the test methods analyzed have a
non-deterministic outcome. Unlike previous work, we found that test flak-
iness is due to a different variety of reasons: the most prominent ones are
Async Wait (≈ 27%), IO (≈ 22%), and Concurrency (≈ 17%), how-
ever reasons such as Test Order Dependency (≈ 11%), and Network
(≈ 10%) also explain a consistent part of flaky tests. We also noticed that
some flakiness motivations might closely relate to test smells.

4.2 RQ2: The Relationship between Flaky Tests and Test Smells

Over all the 18 systems analyzed in the study, 11,120 test methods were dis-
covered to be affected by one of the smells considered, i.e., almost 56% of



The Smell of Fear: On the Relation between Test Smells and Flaky Tests 21

Table 5: Co-occurrences between flaky tests and test smells.

Category
All Resource Optimism Indirect Testing

Total Causal Total Causal Total Causal
Async Wait 100% 100% 26% 0% 0% 0%
Concurrency 71% 68% 1% 0% 1% 0%
Test Order Dependency 98% 84% 13% 0% 80% 80%
Resource Leak 6% 0% 1% 0% 0% 0%
Network 92% 86% 81% 81% 0% 0%
Time 14% 0% 0% 0% 12% 0%
IO 82% 81% 81% 81% 0% 0%
Randomness 2% 0% 0% 0% 0% 0%
Floating Point Operation 1% 0% 1% 0% 0% 0%
Unordered Collections 32% 0% 1% 0% 1% 0%
Overall 81% 75% 31% 26% 11% 10%

Category
Test Run War Fire and Forget Conditional Test Logic
Total Causal Total Causal Total Causal

Async Wait 1% 0% 100% 100% 3% 0%
Concurrency 68% 68% 1% 0% 0% 0%
Test Order Dependency 0% 0% 0% 0% 5% 4%
Resource Leak 0% 0% 0% 0% 5% 0%
Network 0% 0% 11% 5% 0% 0%
Time 0% 0% 0% 0% 2% 0%
IO 0% 0% 0% 0% 1% 0%
Randomness 1% 0% 0% 0% 1% 0%
Floating Point Operation 0% 0% 0% 0% 0% 0%
Unordered Collections 0% 0% 8% 0% 3% 0%
Overall 19% 18% 18% 17% 1% 1%

the test cases was smelly. The most common smell was the Resource Opti-
mism, which affected 3,017 test methods; then, the Indirect Testing appeared
in 2,522 tests, while the Fire and Forget in 2,435 cases. Finally, Test Run War
and Conditional Test Logic had 2,273 and 873 instances, respectively.

Table 5 reports the co-occurrences between flaky tests and test smells:
specifically, for each flaky test motivation previously described, the relationship
between such motivation and (i) any one of the test smells considered, and (ii)
each smell independently, is presented. The “Total” column represents the
percentage of co-occurrences found globally, while column “Causal” highlights
the percentage of co-occurrences for which the test smell was actually related
to the flaky test. It is worth remarking that we considered as causal only the
co-occurrences for which the cause of test flakiness could be directly mapped
on the characteristics of the co-occurring smell (see Section 3.4). In addition,
the row “Overall” reports the results achieved by considering all the flaky
tests independently. Looking at the table, in the first place we can notice that
flaky tests and test smells very frequently occur together (i.e., 81% of the test
methods are both flaky and smelly). More importantly, we found that the test
smells (i) are causally related to flaky tests in 75% of the cases, and (ii) have
strong relationships with four top root causes of test flakiness, i.e., Async
Wait, Concurrency, Test Order Dependency, and IO. Consequently,
this means that test smell removal may potentially remove 75% of flaky tests
present in a software project.
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Before further discussing the results achieved, it is worth reporting the
number of times in which the presence of a test smell did not cause any kind
of flakiness, i.e., a test smell detector might output a “false positive” recom-
mendation with respect to the co-presence of a flakiness issue. Specifically, we
identified 11,120 test smells: 75% of the 8,829 flaky tests were caused by one of
the considered smells, meaning that 6,622 tests were both smelly and flaky; as
a consequence, 4,498 test smell instances (40% of the total smells identified)
did not cause flakiness. While the presence of a considerable number of “false
positive” flakiness-inducing test smells might result in a limited generalizabil-
ity of our results, we can still claim that a large number of test smells cause
flakiness and thus developers should carefully take into account the possibil-
ity to remove them to avoid flakiness problems. Moreover, it is important to
remark that the goal of this paper is to empirically understand the extent of
the relation between smelliness and flakiness and whether test smell removal
represents a viable flakiness fixing strategy. The definition of detectors specif-
ically designed to capture flakiness-inducing instances is out of the scope of
our analyses. Finally, it is also worth highlighting that, even if a certain test
smell instance does not induce flakiness, developers should still take care of
test code as the presence of test smells is strongly associated with additional
problems for software quality. In particular, as reported in recent work [53],
test smells not only make tests more change- and defect-prone, but they are
also detrimental to the tests’ ability to find defects in production code.

Resource Optimism. According to our findings, this test smell closely relates
to flaky tests caused by the IO and Network factors. The relationship with
IO is mainly due to the fact that often test cases rely on external resources
during their execution. Besides the case reported in Listing 1, we found several
other similar cases.

Listing 2: Resource Optimism instance detected in the Apache Nutch project

1 @Test
2 public void testPages () throws Exception {
3 pageTest(new File(testDir , "anchor.html"), "http ://foo.com/", "http ://

creativecommons.org/licenses/by-nc-sa/1.0", "a", null);
4

5 // Tika returns <a> whereas parse -html returns <rel >
6 // check later
7 pageTest(new File(testDir , "rel.html"), "http :// foo.com/", "http ://

creativecommons.org/licenses/by-nc/2.0", "rel", null);
8

9 // Tika returns <a> whereas parse -html returns <rdf >
10 // check later
11 pageTest(new File(testDir , "rdf.html"), "http :// foo.com/", "http ://

creativecommons.org/licenses/by-nc/1.0", "rdf", "text");
12 } �

For example, Listing 2 shows a Resource Optimism instance detected in
the test method testPages of the JUnit class TestCCParseFilter of the
Apache Nutch system. In particular, the invoked method pageTest takes
as input the directory where the html files are located, as well as the name of
the files needed to exercise the production method. The test method is smelly
because it does not check the existence of the files employed; at the same time,
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this issue causes intermittent fails in the test outcome because the testDir

folder is created only when it does not contain files having the same name. In
our dataset, we found that all the Resource Optimism instances co-occurring
with flaky tests caused by an IO issue are represented by a missing check for
the existence of the file. This result is also statistically supported: indeed, we
computed the Kendall’s rank correlation [54] in order to measure the extent
to which test cases affected by this smell are related to IO-flaky tests, finding
the Kendall’s τ = 0.69 (note that τ > 0.60 indicates a strong positive correla-
tion between the phenomena). In the cases where the test flakiness is due to
input/output issues, but these tests are not smelly, we found that the problem
was due to errors in the usage of the FileReader class: similarly to what Luo
et al. [20] have reported, often a test that would open a file and read from it,
but not close it until the FileReader gets garbage collected.

As for the relationship between Resource Optimism and the Network
motivation, we found quite commonly that test cases are flaky because they
wait for receiving the content of a file from the network, but this reception
depends on the (i) quantity of data being received, or (ii) network fails. With
respect to these two phenomena, the Kendall’s τ = 0.63.

The Resource Optimism smell also sometimes co-occurs with other flaky
tests characterized by different issues such as Async Wait or Test Order
Dependency, however we did not find any causation behind such relation-
ships. Thus, these co-occurrences are simply caused by the high diffuseness of
the smell. Also in this case, Kendall’s τ supports our conclusion, being equal
to 0.13 and 0.11, respectively.

Indirect Testing. We observed some small non-significant co-occurrences
with flaky tests related to Time and Concurrency issues. In these cases
the test flakiness was not due to the fact that the test method covers pro-
duction methods not belonging to the method under test, but to prob-
lems related to (i) asserts statements that compare the time with the
System.currentTimeMillis Java method, thus being subject to imprecisions
between the time measured in the test case and the exact milliseconds returned
by the Java method, and (ii) threads that modify data structures concurrently,
causing a ConcurrentModificationException.

On the other hand, we discovered a large and significant relationship be-
tween this smell and flaky tests related to the Test Order Dependency
factor (Kendall’s τ = 0.72). The reason behind this strong link is that test
methods exercising production methods not belonging to the method under
test often do not properly set the environment needed to test these methods.
As a consequence, tests run fine depending on the order of execution of the
test cases that set the properties needed.

Listing 3: Indirect Testing instance detected in the Hibernate project

1 @Test
2 public void testJarVisitor () throws Exception{
3 ...
4

5 URL jarUrl = new URL ("file :./ target/packages/defaultpar.par");
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6 JarVisitor.setupFilters ();
7 JarVisitor jarVisitor = JarVisitorFactory.getVisitor(jarUrl ,

JarVisitor.getFilters (), null);
8 assertEquals(FileZippedJarVisitor.class.getName (), jarVisitor.getClass

().getName ());
9

10 jarUrl = new URL ("file :./ target/packages/explodedpar");
11 ExplodedJarVisitor jarVisitor2 = JarVisitorFactory.getVisitor(jarUrl ,

ExplodedJarVisitor.getFilters (), null);
12 assertEquals(ExplodedJarVisitor.class.getName (), jarVisitor2.getClass

().getName ());
13

14 jarUrl = new URL ("vfszip :./ target/packages/defaultpar.par");
15 FileZippedJarVisitor jarVisitor3 = JarVisitorFactory.getVisitor(

jarUrl , FileZippedJarVisitor.getFilters (), null);
16 assertEquals(FileZippedJarVisitor.class.getName (), jarVisitor3.

getClass ().getName ());
17 } �

For instance, Listing 3 shows a snippet of the test method testJarVisitor

of the JUnit class JarVisitorTest belonging to the Hibernate project.
The test has three assert statements to check the status of objects from ei-
ther the corresponding production class JarVisitor or the external classes
ExplodedJarVisitor and FileZippedJarVisitor. The flakiness manifests
itself when the filters of the external classes (lines #10 and #14 in Listing 3)
are not set by test cases executed before the testJarVisitor one. While the
occurrence of Indirect Testing instances can be considered causal for 80% of
the flaky tests having issues related to Test Order Dependency (i.e., flak-
iness caused by test methods exercising objects of other classes whose correct
setting depends on the execution order), in the remaining 20% of the cases the
flakiness is due to explicit assumptions made by developers about the state of
an object at a certain moment of the execution.

Test Run War. We discovered a strong relationship (Kendall’s τ = 0.62)
between the Test Run War smell and flaky tests caused by Concurrency
issues. Given the definition of the smell, the result is somehow expected since
test methods allocating resources used by other tests can naturally lead to
concurrency problems.

Listing 4: Test Run War instance detected in the Elastic Search project

1 @Test
2 public void testSimple () throws Exception {
3 ExecutorService executorService = Executors.newCachedThreadPool ();
4 List <Future > results = new ArrayList <Future >();
5 final CyclicBarrier barrier1 = new CyclicBarrier(cycles * 2 + 1);
6 final CyclicBarrier barrier2 = new CyclicBarrier(cycles * 2 + 1);
7

8 for (int i = 0; i < cycles; i++) {
9 results.add(executorService.submit(new Callable () {

10 @Override public Object call() throws Exception {
11 barrier1.await();
12 barrier2.await();
13 for (int j = 0; j < operationsWithinCycle; j++) {
14 if(barrier1.isReady ()) {
15 barrier1.setReady(false);
16 assertThat(acquirableResource.acquire (), equalTo(true));
17 }
18 }
19 return null;
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20 }
21 }));
22 results.add(executorService.submit(new Callable () {
23 @Override public Object call() throws Exception {
24 barrier1.await();
25 barrier2.await();
26 for (int j = 0; j < operationsWithinCycle; j++) {
27 acquirableResource.release ();
28 }
29 return null;
30 }
31 }));
32 } �

For example, consider the case of the test method
AbstractAcquirableResourceTests.testSimple of the Elastic Search
project shown in Listing 4. This method initializes several concurrent threads
that perform simultaneous actions on the two objects called barrier1 and
barrier2; the problem in this case arises because the state of barrier1 is
changed in not ready (line 15 in Listing 4) and never turned into ready. Thus,
other threads cannot continue their execution (see lines 11 and 24). From
a statistical perspective, the strength of the relationship between this smell
and flaky tests having concurrency issues obtained a Kendall’s τ = 0.66.
As explained before, when the test has concurrency issues without being
affected by smells, we found that the main reason is related to threads that
simultaneously modify data structures.

Fire and Forget. The relation between this smell and the Async Wait
motivation appeared to be causal in all the cases, indicating the strong relation
between the presence of Fire and Forget instances and asynchronous wait
problems. This result was somehow expected given the findings of RQ1, where
we already observed that the smell intrinsically relates to this kind of flakiness.
The Kendall’s τ in this case was 0.89, thus supporting the conclusion that,
based on our findings, the Fire and Forget smell represents an important source
to locate tests making asynchronous calls and that might be flaky because they
fail to wait for the result of such calls.

Listing 5: Fire and Forget instance detected in the Apache Cassandra project

1 @Test
2 public void testServiceTopPartitionsNoArg () throws Exception {
3 BlockingQueue <Map <String , Map <String , CompositeData >>> q = new

ArrayBlockingQueue <>(1);
4 ColumnFamilyStore.all();
5 Executors.newCachedThreadPool ().execute (() -> {
6 try {
7 q.put(StorageService.instance.samplePartitions (1000 , 100, 10,

Lists.newArrayList("READS", "WRITES")));
8 Thread.sleep (2000);
9 } catch (Exception e) {

10 e.printStackTrace ();
11 }
12 });
13

14 SystemKeyspace.persistLocalMetadata ();
15 Map <String , Map <String , CompositeData >> result = q.poll(11, TimeUnit.

SECONDS);
16
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17 List <CompositeData > cd = (List <CompositeData >) (Object) Lists.
newArrayList ((( TabularDataSupport) result.get("system.local").get
("WRITES").get("partitions")).values ());

18

19 assertEquals (1, cd.size());
20 } �

To provide an example of such relation, Listing 5 reports a Fire
and Forget instance detected on the Apache Cassandra system, and
particularly in the test method testServiceTopPartitionsNoArg of the
org.apache.cassandra.tools.TopPartitionsTest class. The test aims at
exercising the partitioning functions of the system. To this aim, the test starts a
thread involving an asynchronous call to the StorageService class (line #7 of
Listing 5); however, the sleep is set to 2 seconds, causing a non-deterministic
behavior in case the StorageService does not return in a timely manner.
We found similar cases in all the co-occurrences between such smell and the
Async Wait motivation.

At the same time, a notably smaller percentage of co-occurrences (5%)
between this smell and the Network root cause was discovered. In this case,
the reason was due to the presence of http requests whose execution time de-
pends on the performance of the network and that were not properly managed
by tests.

Conditional Test Logic. The final smell of the catalog is concerned with
the presence of conditional statement(s) in a test case that may influence
the portion of the production code exercised, thus producing the risk to run
methods whose environment is not properly set and that fail dependent on the
order of execution of test cases. Looking at the results, we can partially confirm
our conjecture: indeed, while 5% of flaky tests co-occur with a Conditional
Test Logic, we observed that only 4% of them are actually due to the presence
of the test smell. This means that the Conditional Test Logic appears to be
less harmful of other test smells considered in the study even though it can
sometimes explain test flakiness.

Listing 6: Conditional Test Logic instance detected in the Apache Pig project

1 @Test
2 public void testStopOnFailure () throws Throwable {
3

4 ...
5

6 if (Util.isMapredExecType(cluster.getExecType ())) {
7 JobGraph jobGraph = PigStats.get().getJobGraph ();
8 List <JobStats > failedJobs = jobGraph.getFailedJobs ();
9

10 assertEquals (2, failedJobs.size());
11

12 for (JobStats stats : failedJobs) {
13 if (stats.getAlias ().equals("A,B")) {
14 // Job with alias A,B should have failed because of streaming

error
15 assertTrue(stats.getMessage ().contains(
16 "Received Error while processing the map plan: "
17 + "’false (stdin -org.apache.pig.builtin.PigStreaming/stdout -org.

apache.pig.builtin.PigStreaming)’"
18 + " failed with exit status: 1"));
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19 } else {
20 // Job with alias A1 with sleep should be killed as a result of

stop on failure
21 assertTrue(stats.getErrorMessage ().startsWith("Failing running

job for -stop_on_failure"));
22 }
23 }
24

25 ...
26

27 } �
To better explain the situations where the Conditional Test Logic

smell can induce a Test Order Dependency flakiness, let con-
sider the case of the testStopOnFailure method belonging to the
org.apache.pig.test.TestGrunt class of the Apache Pig project, which
is presented in Listing 6. As shown, the test exercises two different production
methods depending on the result of the if statement at line #13. The flaki-
ness manifests itself where the condition is false (i.e., the block starting at line
#20 is executed), since the getErrorMessage method succeeds only in case it
is properly set by the testInvalidParam method, i.e., only in case the order
of execution of test methods is the proper one.

As a final note, it is worth remarking that we did not observe differences
when analyzing the results per project. This means that the size of systems
does not seem to impact our findings.

Implications. The overall output of this research question consists of four
main implications, discussed in the following:

1. Test smells represent an important source of information to locate tests
possibly suffering of flakiness. For this reason, the development of accurate
test smell detectors as well as techniques able to promptly highlight to
developers the emergence of a certain design issue (e.g., just-in-time ap-
proaches [55]) should be the top-priorities for researchers working in the
field of software design and testing. While some steps toward this direction
have been already done so far [41, 42, 56], we believe that more research in
this field is needed, in order to better support developers when analyzing
the quality of test code.

2. Our findings revealed that some test smells might be considered more im-
portant than others, at least considering their harmfulness with respect to
test code flakiness. This paves the way for a new generation of test smell
prioritization approaches able to exploit flakiness-related information to
recommend which are the most risky test smells and, thus, suggesting to
developers a possible test smell removal prioritization.

3. Given the impact of test smells on test code flakiness, we believe that one
major implication of our study is related to the way software testing is
taught to software engineering students. Indeed, we argue and warmly in-
vite software engineering educators to give more focus and consideration
to test code quality and, more in particular, test smells through specialized
courses, seminars, and/or practical exercises. We consider the educational
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aspect fundamental to pose the basis to form the next generations of soft-
ware engineers.

4. As the relation between test smells and flaky tests is often causally tied,
this might imply that operations performed to remove test smells might
have an impact on test flakiness, besides removing the smells themselves:
the assessment of this aspect is the goal of the next research question.

Summary of RQ2. 81% of the flaky tests are also affected by a test
smell. Interestingly, the cause of flakiness of 75% of the tests is directly
attributable to the presence of the design smell. As a direct consequence, the
removal of these smells may provide benefits in terms of flakiness removal.

Table 6: Number of Flakiness-Inducing Test Smells Before and After Their Removal.

Category
Any Resource Optimism Indirect Testing

Before After Before After Before After
Async Wait 2,391 0 - - - -
Concurrency 1,018 0 - - - -
Test Order Dependency 921 0 - - 879 0
Network 728 0 684 0 - -
IO 1,605 0 1,605 0 - -
Overall 6,663 0 2,289 0 879 0

Category
Test Run War Fire and Forget Conditional Test Logic
Before After Before After Before After

Async Wait - - 2,391 0 - -
Concurrency 1,018 0 - - - -
Test Order Dependency - - - - 42 0
Network - - 44 0 - -
IO - - - - - -
Overall 1,018 0 2,435 0 42 0

4.3 RQ3: The Role of Test Smell Removal

In the context of RQ3 we applied operations only on the test smells causally
related to flaky tests. Thus, we removed 6,663 test smell instances. Clearly,
we could not remove the remaining 25% of flaky tests because they are not
affected (or not causally affected) by test smells. Consequently, this means that
in RQ3 we aimed at removing 75% of flaky tests by means of the recommended
removal operations.

As expected, the fixing operations removed the test smells occurring in the
affected test code: indeed, after re-organizing the source code, the test smell
detector was not able to identify those smells anymore, suggesting that the
operations are the correct solutions to deal with the considered test smells.
While this result was expected (removal operations have the goal to remove
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smells), it is still important because it suggests that such operations were
properly applied in our context.

Much more interesting, the test smell removal also had a strong beneficial
effect on the number of flaky tests occurring in the subject systems. As shown
in Table 6, the number of flaky tests occurring after the application of a re-
moval operation aimed at removing a flakiness-inducing test smell was reduced
to zero: thus, 75% of the total flaky tests were removed through the
recommended removal strategies. This confirmed our hypothesis, showing
that developers can remove a sizable part of flaky tests by performing simple
program transformations that do not functionally alter the tests (i.e., they do
not test more/less after removal) and that make test code self-contained, fo-
cused on a given production class, or paying attention on how external calls
are acquired and released.

Listing 7: Removal Operation for the Indirect Testing instance detected in the
Hibernate project

1 @Test
2 public void testJarVisitor () throws Exception {
3 ...
4

5 URL jarUrl = new URL ("file :./ target/packages/defaultpar.par");
6 JarVisitor.setupFilters ();
7 JarVisitor jarVisitor = JarVisitorFactory.getVisitor(jarUrl , JarVisitor

.getFilters (), null);
8 assertEquals(JarVisitor.class.getName (), jarVisitor.getClass ().getName ()

);
9 }

10

11 @Test
12 public void testExplodedJarVisitor () throws Exception {
13 ...
14

15 URL jarUrl = new URL ("file :./ target/packages/explodedpar");
16 ExplodedJarVisitor.setupFilters ();
17 ExplodedJarVisitor jarVisitor = JarVisitorFactory.getVisitor(jarUrl ,

ExplodedJarVisitor.getFilters (), null);
18 assertEquals(ExplodedJarVisitor.class.getName (), jarVisitor.getClass ().

getName ());
19 }
20

21 @Test
22 public void testFileZippedJarVisitor () throws Exception {
23 ...
24

25 URL jarUrl = new URL ("vfszip :./ target/packages/defaultpar.par");
26 FileZippedJarVisitor.setupFilters ();
27 FileZippedJarVisitor jarVisitor = JarVisitorFactory.getVisitor(jarUrl ,

JarVisitor.getFilters (), null);
28 assertEquals(FileZippedJarVisitor.class.getName (), jarVisitor.getClass ()

.getName ());
29 } �

For the sake of clarity, consider the case of the Indirect Testing previ-
ously presented in Listing 3. After the application of the Extract Method, the
test code became as shown in Listing 7: specifically, the indirection was re-
moved by creating two new test methods, called testExplodedJarVisitor

and testFileZippedJarVisitor, besides the existing testJarVisitor test
method. Each test method is responsible to test the getVisitor method refer-
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ring to the corresponding production class. Moreover, before passing the filters
as parameter to the getVisitor method (see getFilters method calls), such
filters are set up through an explicit call to the method setupFilters, which
is present in all the production classes tested. This removal operation made the
test cases independent from their execution order. Therefore, their flakiness
was removed after this operation.

The other removal operations, i.e., Setup External Resource, Make Resource
Unique, Add Await Condition, and Extract Method (needed to remove the
Resource Optimism, Test Run War, Fire and Forget, and Conditional Test
Logic smells, respectively), had similar positive effects on flaky tests. As a
matter of fact, all the removal operations performed produced a version of
test cases where not only the design problems were removed, but also the
flakiness was fixed.

Implications. The findings discussed so far have one major implication for
both tool vendors and researchers. Based on our results, we can claim that
removal of test smells represent an important methodology that developers
can use to improve the overall effectiveness of test cases. Unfortunately, up
to now there are no tools that allow the automatic test smell removal [57].
Thus, the definition of accurate approaches, able to recommend to developers
design solutions that remove certain test smells, represents the next challenge
to pursue. This is a call for both researchers and tool vendors, in order to
build effective tools assisting developers during their daily activities: to this
aim, analyses aimed at understanding when to recommend removal operations
(e.g., at commit-time vs deadline-time) might be a useful piece of additional
information to exploit to make test smell removal tools effective. At the same
time, techniques making developers aware of the harmfulness of test smells
(e.g., test smell summarizers) can represent an important plus to accelerate
technological transfer and allow test smell detectors and removal tools to be
adopted in practice.

Summary of RQ3. Test smell removal represents a vital activity not only
aimed at removing design flaws, but also aimed at fixing a sizable portion
of the flaky tests affecting a software system. Specifically, we found that
75% of flaky tests were removed thanks to operations making the test code
more self-contained, focused on a specific target, or careful when managing
external calls and resources.

5 Threats to Validity

This section discusses possible threats that might have influenced our obser-
vations as well as the way we mitigated them.
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5.1 Threats to construct validity

The main threats related to the relationship between theory and observation
(construct validity) are related to possible imprecisions in the measurement
performed. In principle, to elicit a catalog of flakiness-inducing test smells
we performed a two-step process: on the one hand, we manually went over
the definitions of the test smells defined so far in the literature, by deeply
considering the multivocal literature review proposed by Garousi and Küçük
[35]; on the other hand, we also performed semi-structured interviews with
10 professional software testers having more than 20 years of experience in
testing of modern software systems. The latter step was done with the aim of
ensuring that no further bad practice, not yet defined in literature, might not
have been considered in the context of our study.

To identify test smell instances we relied on detection mechanisms that in-
volved the use of (i) the tool proposed by Bavota et al. [40], which is publicly
available and of which the performance was assessed at 88% of precision and
100% of recall in detecting Resource Optimism, Indirect Testing, and Test Run
War instances and (ii) our own detector for the identification of Fire and For-
get and Conditional Test Logic smells. To be sure of the actual suitability of
such tools in our context, we performed a preliminary empirical study aimed
at assessing the detection performance in our context: this process relied on
a manual identification of test smell instances belonging to 3 projects of our
dataset. The oracle construction involved two external professional developers
having more than 7 years of programming experience, that actively work on
the definition of test cases in their own companies, and having extensive expe-
rience in software design and bad practices. Moreover, we also generalized the
detection accuracy by asking the external inspectors to establish the actual
smelliness of a statistically significant sample of test smell candidates output
by the exploited detectors and belonging to the systems of our dataset that
were not considered in the initial evaluation. It is worth remarking that we
relied on external inspectors with the aim of avoiding biases due to Observer-
expectancy effect [48]. Such an extensive analysis validated that the detection
approach was pretty effective, which entails that the vast majority of instances
of the types of tests smells that were considered are part of our study.

Another threat is related to how we identified flaky tests: specifically, we
run the test cases of a certain application ten times, and marked all the tests
showing a different behavior in one of the ten runs as flaky. However, the choice
of the number of runs was not random, but driven by the calibration carried
out on three of the systems employed in our study, where we observed that
ten runs are enough for discovering the maximum number of flaky tests (more
details in Section 3).



32 Fabio Palomba, Andy Zaidman

5.2 Threats to conclusion validity

Threats to conclusion validity are related to the relationship between treat-
ment and outcome. Most of the work done to answer our research questions
was conducted by means of manual analysis, and we are aware of possible im-
precisions made in this stage. However, it is important to note that a manual
analysis was needed to perform our investigation. For example, in RQ1 we
manually classified the motivations behind flaky tests because of the lack of
automated tools able to perform this task automatically; moreover, it is worth
noting that also the authors of the taxonomy used manually labeled flaky tests
to understand their root causes [20]. When performing the task, we followed
the same guidelines provided by Luo et al. [20]. Therefore, we are confident
about the classification described in Section 4.

As for RQ2, it may be possible that the majority of the test smells appear-
ing in tests do not cause any kind of flakiness, thus potentially decreasing the
scope of our work and the conclusions we draw. In our dataset, we identified
11,120 test smells over the total 19,532 tests, and discovered that 75% of the
8,829 flaky tests were caused by one of the considered test smells. This means
that 6,622 tests were flaky and smelly at the same time. As a consequence,
4,498 test smell instances did not cause flakiness. Thus, 40% of the smells are
not harmful from a flakiness perspective.

On the one hand, from this analysis we notice the presence of a large num-
ber of “false positives”, i.e., test smells that do not cause flakiness problems.
On the other hand, however, we argue that this does not necessarily nega-
tively influence the conclusions we made. Indeed, we still believe that a large
number of test smells cause flakiness and thus developers should carefully take
into account the possibility to remove them to avoid flakiness problems. At the
same time, we also argue that, even if a certain test smell instance does not
induce flakiness, developers should still re-organize test code as the presence of
test smells is strongly associated with additional problems for software qual-
ity. In particular, as reported in recent work [53], test smells not only make
tests more change- and defect-prone, but are also detrimental for the ability
of tests to find defects in production code. Therefore, we conclude that test
smell removal represents a powerful methodology helping with both flakiness-
and quality-related issues.

Still in RQ2, to effectively discriminate the role of each flakiness-inducing
test smell on the actual flakiness of a test method we performed a manual
investigation in order to go beyond the simpler co-occurrence analysis, that
we did not consider reliable (co-occurrence does not imply causality) to un-
derstand the relationship between the test smells considered and the flakiness
of test code. To ensure the validity of our conclusions, we have also performed
an additional validation of our data. In this regard, we involved the two exter-
nal professional testers that built the oracle of test smells for the assessment
of the detection approach and asked them to validate the lists of flaky tests
and flakiness-inducing test smells. Similarly to the creation of an oracle of test
smells, the inspectors were provided with (i) the source code of the subject
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systems, (ii) the list of flaky tests identified, (iii) the list of smelliness-inducing
flaky tests. It is important to remark that both the inspectors have experience
with test flakiness and thus could provide valuable feedback. Besides the pro-
vided data, they could run the flaky test identification mechanism as well as
the test smell detector if needed. The task they performed was to assign the
value true to the items of the two lists that were considered as trustworthy,
false otherwise. The reports we received from the inspectors fully supported
our data analysis process. For this reason, we are even more confident of the
validity of our analysis. In addition, we employed the Kendall rank correla-
tion test [54], to statistically evaluate the strength of the relationship between
the two phenomena taken into account. It is worth remarking that we selected
this statistical test because it is generally more accurate than other correlation
tests [58].

Finally, in the context of RQ3 we manually re-organized the source code
because there is no tool able to perform automatic removal of test smells. While
a manual re-organization of the source code may lead to a certain degree of
subjectivity, we verified our ability in the application of removal strategies by
re-running the test smell detector on the re-organized version of the subject
systems: as a result, the detector did not detect the smells anymore. For this
reason, we are confident about the way such operations were applied. Still in
this category, another threat may be related to the effect of the test smell
removal operation applied on the effectiveness of test cases. Theoretically, test
smell removal is the process of changing the source code without altering its
external behavior [38], and thus the effectiveness of test code before and after
the re-organization should be the same. However, from a practical point of
view, the application of such operations may lead to undesired effects [59]. To
verify that the re-organization of the test code did not have negative effects on
vital test code characteristics, we performed an initial additional analysis: we
measured the code coverage of the test cases before and after the application of
test smell removal operations. In particular, we considered the test cases of the
two larger software systems in our dataset, i.e., Apache Lucene and Elastic
Search, and measured the coverage before and after the code re-organization
using the JaCoCo toolkit4. We observed that the level of branch coverage
of both versions is exactly the same (on average, it reaches 64%): thus, while
maintaining the same coverage we were able to fix more than half of the flaky
tests by removing test smells.

5.3 Threats to external validity

Finally, as for threats to external validity, the main discussion point regards
the generalizability of the results. We conducted our study taking into account
18 systems; we are aware that most of them come from a single ecosystem
(the Apache Software Foundation). While this is still a limitation of our

4 http://www.eclemma.org/jacoco/
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study, it is important to note that the considered projects have different scope
and characteristics, that allow us to claim that the results of the study hold
when considering a wide range of system types. Nevertheless, replications of
the study on larger and different datasets are desirable. At the same time,
replications in the context of industrial settings might reveal different results
due to, for instance, the different strategies adopted by developers when deal-
ing with flaky tests and/or test smells. Our future research agenda includes
the replication of the study in industry.

6 Related Work

In this section we provide an overview on the research conducted in the recent
years on both test smells and flaky tests.

6.1 Test Smells

While the research community devoted a lot of effort on understanding [60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76] and detecting [47, 77, 78,
79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89] design flaws occurring in production
code, smells affecting test code have only been partially explored.

Beck was the first to highlight the importance of well-designed test code
[10], while Van Deursen et al. [31] defined a set of 11 test smells, i.e., a catalog
of poor design solutions to write tests, together with operations aimed at
removing them. Later on, Meszaros defined other smells affecting test code [32].
Based on these catalogs, Greiler et al. [41, 90] showed that test smells affecting
test fixtures frequently occur in industrial contexts, and for this reason they
presented TestHound, a tool able to identify fixture-related test smells such
as General Fixture or Vague Header Setup [41]. Van Rompaey et al. [42]
devised a heuristic code metric-based technique able to identify instances of
two test smells, i.e., General Fixture and Eager Test, but the results of an
empirical study showed the low accuracy of the approach.

As for empirical studies conducted on test smells, Bavota et al. [40] per-
formed a study where they evaluated (i) the diffusion of test smells in 18
software projects, and (ii) their effects on software maintenance. The results
showed that 82% of JUnit classes are affected by at least one test smell, and
that their presence has a strong negative impact on the maintainability of the
affected classes. Finally, Tufano et al. [44] conducted an empirical study aimed
at measuring the perceived importance of test smells and their lifespan during
the software life cycle. The main findings indicate that test smells are usually
introduced during the first commit involving the affected test classes, and in
80% of the cases they are never removed, essentially because of poor awareness
of developers.

Clearly, the study reported in this paper strongly differs from the existing
literature since we showed how test smells can be nicely adopted to locate
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flaky tests as well as the ability of test smell removal operations to be good
test code fixing strategies. Moreover, our paper may represent a step ahead
toward a higher awareness of the importance of test smells and their removal
from the developers’ point of view.

6.2 Flaky Tests

As pointed out by several researchers and practitioners, flaky tests represent
an important issue for regression testing [20, 27, 16, 22, 23, 24]. Memon and
Cohen [22] described a set of negative effects that flaky tests may create dur-
ing regression testing, finding that their presence can even lead to missing
deadlines due to the fact that certain features cannot be tested sufficiently
[22]. Marinescu et al. [91] analyzed the evolution of test suite coverage, report-
ing that the presence of flaky tests produces an intermittent variation of the
branch coverage.

Other researchers tried to understand the reasons behind test code flaki-
ness. Luo et al. [20] manually analyzed the source code of tests involved in 201
commits that likely fixed flaky tests, defining a taxonomy of ten common root-
causes. Moreover, they also provide hints on how developers usually fix flaky
tests. As a result, they found that the top three common causes of flakiness are
related to asynchronous wait, concurrency, and test order dependency issues.
In RQ1, we partially replicated the study by Luo et al. in order to classify the
root-causes behind the flaky tests in our dataset, discovering that on larger
datasets other root-causes, such as network and input/output problems, are
quite frequent as well.

Besides Luo et al., also other researchers investigated the motivations be-
hind flaky tests as well as devised strategies for their automatic identification.
For instance, Zhang et al. [24] focused on test suites affected by test depen-
dency issues, by reporting methodologies to identify these tests. At the same
time, Muslu et al. [23] found that test isolation may help in fault localization,
while Bell and Kaiser [27] proposed a technique able to isolate test cases in
Java applications by tracking the shared objects in memory. Bell et al. [92]
proposed DeFlaker, an automated technique that identifies flaky tests by
running a mix between static and dynamic analyses: with respect to this pa-
per, our work is complementary since we aim at studying how much wrong
design or implementation choices applied by programmers during the devel-
opment of test cases have an influence on test code flakiness.

Another well-studied root cause of flaky test is concurrency. In particular,
Farchi et al. [28] identified a set of common erroneous patterns in concur-
rent code and suggested the usage of static analysis tools as a possible way
to automatically detect them. Lu et al. [93] reported a comprehensive study
into the characteristics of concurrency bugs, by providing hints about their
manifestation and fixing strategies. Still, Jin et al. [29] devised a technique for
automatically fixing concurrency bugs by analyzing the single-variable atom-
icity violations.
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With respect to these studies, our work can be considered as a further step
ahead toward the resolution of the flaky test problem: indeed, we demonstrated
how most of the flaky tests can be fixed by applying operations aimed at
making test code self-contained.

Finally, some studies focused on test code bugs. For instance, Daniel et
al. [25] proposed an automated approach for fixing broken tests that perform
changes in test code related to literal values or addition of assertions. Another
alternative was proposed by Yang et al. [26], who devised the use of Alloy
specifications to repair tests.

It is important to note that these fixing strategies refer to tests that fail
deterministically, and cannot be employed for fixing flaky tests. Conversely,
our solution can be easily applied in this context.

7 Conclusions and Future Work

In this paper, we first adopted a systematic mixed-method analysis to identify,
from the whole set of test smells defined in literature, those of which the
characteristics might determine some sort of test flakiness, which arises when
tests do not have a deterministic outcome. The output of (1) a state-of-the-art
analysis and (2) semi-structured interviews enabled us to define a catalog of
five flakiness-inducing test smells, i.e., Resource Optimism, Indirect Testing,
Test Run War, Fire and Forget, and Conditional Test Logic, originally coming
from three different sources such as the works by Van Deursen et al. [31],
Meszaros [32], and Garousi and Küçük [35].

With this catalog as a basis, we then conducted a large-scale investiga-
tion aimed at providing empirical evidence of the relation between flakiness-
inducing test smells and actual flakiness of the test cases. Moreover, we aimed
at understanding whether removal of test smells induces the fixing of flaky
tests. In this empirical study, we have first performed an analysis aimed at
measuring the magnitude of the flaky test phenomenon by (i) measuring the
extent to which tests are flaky, and (ii) identifying the root-causes leading
tests to be non-deterministic. Subsequently, we have looked deeper into the
relationship between flaky tests and flakiness-inducing test smells. Specifically,
we measured how frequently flaky tests and test smells co-occur and to what
extent such smells causally relate to the root-causes leading tests to be flaky.
Finally, to assess the role of test smell removal operations, we manually re-
moved the test smells causally related to flaky tests. Afterwards, we re-ran the
flaky test identification mechanisms to understand whether this removal also
fixed the test code flakiness.

Our investigation provided the following notable findings:

– Flaky tests are quite diffused in open-source software systems, as we
found that almost 45% of the JUnit test methods analyzed have a non-
deterministic outcome. While the most prominent causes of flakiness are
asynchronous waits, input-output issues, and concurrency problems, other
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motivations such as test order dependency and network issues are also quite
popular.

– Almost 81% of flaky tests are affected by one of the five flakiness-inducing
test smells contained in our catalog. More importantly, we found that the
cause of 75% of the flaky tests can be directly attributed to the character-
istics of the co-occurring smell.

– All the flaky tests causally related to test smells can be fixed by applying
test smell removal operations. As a consequence, we conclude that test
smell removal is an effective flaky test fixing strategy able to fix most of the
tests having non-deterministic outcomes.

We believe that our findings provide a strong motivation for practitioners
to adopt test code quality checkers while developing test cases [94]. The results
also represent a call to arms for researchers to define effective automated tools
able to locate test smells and re-organize test code to improve the effectiveness
of test suites. Finally, it is worth remarking the importance of our results
for teaching software testing: indeed, we believe that educators should more
carefully teach the effects of test smells on test flakiness, and how these test
smells can be avoided.

Our future agenda focuses on the design of accurate test smell detectors
and removal approaches. Furthermore, we plan to replicate our empirical study
in an industrial setting, to assess the extent to which different development
standards have an effect on the findings reported in this study. To fully guar-
antee replicability, we also plan to build a platform aimed at reporting and
visualizing, for each refactoring operation performed in the context of RQ3,
the specific action that was performed and the rationale behind it. Finally, we
also plan to extend our investigation, further investigating the interplay be-
tween (i) test code quality, (ii) test code re-organization and (iii) test reliability
as measured by mutation analysis [95] and/or code coverage [96].
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